Innovation durch Kontinuität – das Ertragskundliche Versuchswesen in Bayern

von
Hans Pretzsch, Heinz Utschig, Martin Bachmann

Waldbaurichtlinien vergehen – Wuchsgesetze bleiben bestehen

Langlebige Systeme erfordern langfristige Forschung

Die lange Lebensdauer und standörtliche Vielfalt der Wälder führten bereits im 19. Jahrhundert immer wieder zur unreflektierten Übernahme und Anwendung vermeintlichen Erfahrungswissens. Aufgrund der langen Reaktionszeiten des Waldes auf Steuerungsmaßnahmen, wie beispielsweise auf die Wahl des Ausgangsverbandes und des Durchführungsprogramms, konnten die Praktiker die langfristigen Konsequen-

Die spezifischen Systemeigenschaften von Wäldern erschweren ihre experimentelle Zugänglichkeit und erfordern eigene Versuchsmethoden, die in Zeit- und Raumskala über die Standardmethoden der Physik.

Kurze Geschichte des Ertragskundlichen Versuchswesens in Bayern

Von Niederdurchforstungsversuchen bis zum Naturwaldmonitoring

Die auf Kontinuität setzende Forschungsstrategie des Ertragskundlichen Versuchswesens kommt dadurch zum Ausdruck, dass die überwiegende Zahl der Versuchsanlagen weit über die begrenzten Interessensperioden der Praxis hinaus unter Beobachtung gehalten wurden. Das spiegelt der gegenwärtige Aufbau des Netzes langfristiger Versuchsflächen in Bayern wider (Abb. 2):

![Diagramm](image)

Abb. 2: Das Netz langfristiger ertragskundlicher Versuchsflächen in Bayern umfasst gegenwärtig 161 Versuchsanlagen mit 968 Parzellen und eine Messfläche von 179 Hektar. Untersucht werden Durchforstung, Düngung, Anbauwürdigkeit und Provenienz heimischer und fremdländischer Baumarten, Wachstumsreaktionen auf Störfaktoren (Grundwasserabsenkung, Trassenaufhieb, Streusalzausbringung), Baumartenmischung und Verjüngung sowie die ungesteuerte Bestandesentwicklung in Naturwäldern (Stand: 01.10.2001). Innerhalb der Säulen ist die Anzahl von Versuchsflächen der jeweiligen Versuchsart aufgeführt.

Durchforstungsversuche verfolgen die Wachstumsreaktionen auf Durchforstungseingriffe unterschiedlicher Art, Stärke und Intensität (Bildtafeln 2 u. 3):

(a) Die Nullparzelle (Aufnahme 1996: Alter 74 Jahre, Stammzahl 1.044 Bäume/ha, Vorrat 761 VfmS/ha, jährlicher Volumenzuwachs 25,7 VfmS/ha, Durchmesser der 100 stärksten Bäume/ha 41,9 cm) zeigt die maximale Dichte in mittelalten Fichtenbeständen auf. Eindrucksvoll ist die Akkumulation von großen Totholzmengen, wenn eine Holzernte unterbleibt.

(b) Die starke Auslesedurchforstung (Aufnahme 1996: Alter 74 Jahre, Stammzahl 611 Bäume/ha, Vorrat 644 VfmS/ha, jährlicher Volumenzuwachs 26,1 VfmS/ha, Durchmesser der 100 stärksten Bäume/ha 46,5 cm) zeigt, dass bei starker Durchforstung die Durchmesserentwicklung der verbleibenden Bäume gesteigert werden kann.

Fotos: Leonhard Steinacker

Fotos: Leonhard Steinacker

Düngungsversuche (23 Versuche, 195 Parzellen) streben Gesetzmäßigkeiten zwischen Art, Menge und Turnus von Düngungen und dem mit ihnen erzielten Ertrag an. Als Referenz dienen dabei unbehandelte Parzellen der Versuchsanlage. Die Mehrzahl der mitteleuropäischen Düngungsversuche geht auf die 60er und 70er Jahre zurück.

Angesichts der sich abzeichnenden Klimaveränderungen im mitteleuropäischen Raum gewinnen die im 20. Jahrhundert entstandenen Anbau- und Provenienzversuche (8 Versuche, 175 Parzellen) neue Aktualität.

Versuche zur Diagnose von Störfaktoren (10 Versuche, 29 Parzellen) zielen auf den Nachweis und die Quantifizierung des Effektes von Störeinflüssen (z.B. Grundwasserabsenkung, Rauchschaden, Streusalzbelastung, Trassenauftrieb) auf das Waldwachstum. Da die Störungseinflüsse in der Regel nicht aktiv eingestellt werden, positioniert man die Parzellen einer Versuchsanlage so, dass sie verschiedene Faktorstufen (z.B. unterschiedliche Schwefelbelastungen oder Eintragsraten von Streusalz) repräsentieren.

\footnote{Utschig, 1992, S. 117 f.}
Bild 4a
Bild 4b

(a) Die Herkunft Semmering (Nördliche Alpenwirtschaft der Österreicks) weist mit einem jährlichen Volumenzuwachs von 9 VfmS/ha nur mäßige Leistung aber mit 54% einen erheblichen Anteil gerader Schäfte auf.

(b) Demgegenüber besitzt die Provenienz Mala Wies (Warschauer Ebene/Polen) mit einer jährlichen Volumenzuwachs von 27 VfmS/ha das aktuell höchste Zuwachsniveau aber keine Anteil gerader Schäfte.

Fotos: Leonhard Steinacker

Besondere Aktualität besitzen die gegenwärtig 49 Mischbestands- und Verjüngungsversuche mit 194 Parzellen (Bildtafeln 5 – 7):

(b) Verjüngungsversuch Rohrmoos 107 in den Allgäuer Alpen. Der seit 1952 beobachtete, im Mittel über 160-jährige Bergmischwald befindet sich in einer Höhenlage von 1.120 m über NN. Obwohl 1992 etwa 84 % der Fläche überschirmt sind – die Hälfte davon sogar zwei- und mehrfach – wurden 14.500 Verjüngungspflanzen/ha gezählt, die sich zu 14 % aus Fichte, zu 12 % aus Tanne und zu 74 % aus Buchen und sonstigem Laubholz zusammensetzen.

Fotos: Leonhard Steinacker
Bildtafel 6: Plenterwald-Versuch Freyung 129 im Kreuzberger Gemeindewald. Obwohl die Teilparzelle 3.2 mit 660 VfmD/ha "vorratsreich" ist, 504 Derbholzstämme/ha trägt und einen jährlichen Volumenzuwachs von 11,4 VfmD/ha leistet, lassen sich in der Verjüngung (Durchmesserbereich bis Derbholzgrenze) 37.800 Pflanzen/ha finden, davon 70 % Fichte, 7 % Tanne und 23 % Buche.

Verjüngungsversuche prüfen die Wirkung definierter Bestandesstrukturen (z.B. Überschirmungsgrad, Mischungsanteile, Bestockungsgrad) auf das Ankommen, die Entwicklung sowie den qualitativen und quantitativen Ertrag der Verjüngung. Auf Freiflächen oder unter einem Altholzschirm, der mehr oder weniger stark aufgelichtet ist, werden natürliche oder künstlich eingebrachte Verjüngungspflanzen in ihrer Entwicklung verfolgt und gegebenenfalls durch Eingriffe in den Altholzschirm gesteuert.

(a) Das Bild zeigt einen Bestandesausschnitt aus Parzelle 4 (Aufnahme 1997: Alter 66 Jahre, Stammzahl 1.380 Bäume/ha (Oberstand Buche 190 und Eiche 418 Bäume/ha), Vorrat 404 VfmD/ha, jährlicher Volumenzuwachs 18,3 VfmD/ha). Auf dieser Parzelle stehen die beiden Baumarten in starker Konkurrenz (Durchmesser der 100 stärksten Stämme/ha bei Buche 38,2 cm und bei Eiche 30,6 cm).

(b) Parzelle 7 repräsentiert einen reifen Buchen-Eichen-Bestand (Aufnahme 1997: Alter 146 Jahre, Stammzahl 549 Bäume/ha (Oberstand Buche 137 und Eiche 161 Bäume/ha), Vorrat 687 VfmD/ha, jährlicher Volumenzuwachs 12,6 VfmD/ha). Der Buchenoberstand hat sich aus dem Buchenunterstand heraus entwickelt und wird erst jetzt zu einer Konkurrenz für die herrschenden Eichen (Durchmesser der 100 stärksten Stämme/ha bei Buche 37,4 cm und bei Eiche 60,9 cm). Fotos: Leonhard Steinacker
Wechselwirkungen zwischen Versuchswesen und Praxis

Vor großflächigem Anbau einer neuen Sorte von Sonnenblumen, Raps oder Mais kann deren Wachstum und Behandlung kurzfristig experimentell geprüft werden. Diese Vorgehensweise ist bei Waldbeständen, etwa zur Analyse waldbaulicher Behandlungsprogramme, aufgrund der langen Zeiträume in der Regel nicht möglich; nach Abschluss solcher langwieriger Prüfungen wären die Behandlungsmodelle vermutlich bereits wieder veraltet oder vergessen. Beschränken sich Untersuchungen aber auf einen nur kurzen Abschnitt der Bestandesentwicklung oder auf spezifische Standortbedingungen, so besteht die Gefahr voreiliger Schlüsse und unzulässiger Verallgemeinerungen.

Ein wohl ewig aktuelles Beispiel bildet der durch temporäre Untersuchungen genährte Glaube an eine beliebig oft wiederholbare Wuchsbeschleunigung durch früh einsetzende, starke Durchforstungseingriffe. Allein ein kurzer Blick auf das Gesetze des abnehmenden Grenznutzens von Mitscherlich6, das auch zwischen der Sondraumangebot eines Baumes und seinem Stammzuwachs besteht, zeigt, dass zwar eine erste Standaunerweiterung (1. Eingriff) den bekannten Zuwachseffekt auslöst, dieser Zuwachseffekt mit jedem folgenden Eingriff (2. Eingriff usw.) aber geringer wird (Abb. 4a):

5 Pretzsch, 2002
6 Mitscherlich, 1948

438
Abb. 4: Gesetzmäßigkeiten des Wachstums von Einzelbäumen in schematischer Darstellung.
(a) Abnehmender Grenznutzen hinsichtlich des Zuwachses bei zunehmendem Standflächenangebot.
(b) Gesetzmäßige Abnahme des Verhältnisses zwischen Kronenoberfläche und Kroneninhalt mit der Zunahme der Kronenfläche von Fichte und Buche.

⁷ Rubner, 1931

¹⁰ Curtis et al., 1997, S. 19-25
¹¹ Smith et al., 1997
¹² Zeide, 2001, S. 20-25
¹³ Verein Deutscher Forstlicher Versuchsanstalten, 1902, S. 180-184
¹⁴ Harper, 1977
Abb. 7: Gesamtwuchsleistung langfristiger Fichten- und Buchen-Versuchsflächen in Abhängigkeit vom Durchforstungsgrad in mittlerem und höherem Alter. Mäßige und starke Entnahmen können die Gesamtwuchsleistung gegenüber unbehandelten Beständen (= 100 Prozent) signifikant erhöhen.

liegt die Gesamtwuchsleistung beim C-Grad aber immer noch höher als beim A-Grad. Die eingetragenen Balken für den einfachen Standardfehler weisen für den B-Grad überwiegend signifikante Unterschiede vom A-Grad (= 100 % -Wert) nach. Der Zusammenhang zwischen Dichte und Wachstum stellt sich also als Optimumkurve dar; die Annäherung an maximale Dichte ist mit durchschnittlichen Wachstumseinschränkungen von 5–10 % verbunden. In absoluten Werten ist das gleichbedeutend mit Ertragseinbußen von 80 bis 160 Vfm pro Hektar bei der Fichte und von 30 bis 60 Vfm pro Hektar bei der Buche.

\[\text{Pretzsch, 2001}\]
Abb. 8: Ergebnis der Modellberechnungen für Fichtenbestände auf wüchsigen Standorten im Vorallgäu (Wuchsbezirk 13.04). Für 4 Behandlungsstrategien (A-Grad, blaue Linie), punktuelle Auslese- durchforstung (p. ADF, gelbe Linie), starke kombinierte Hochdurchforstung/Niederdurchforstung (HDF/NDF, grüne Linie) und Z-Baum-Durchforstung (rote Linie)) wurde die Bestandes- entwicklung über 110 Jahre mit dem Wuchsmodell SILVA 2.2 fortgeschrieben. (a) Die Stammzahldiskussion beschreibt die unterschiedlichen Eingriffsstärken. (b) Hier wird die Wirkung der Eingriffe auf die Durchmesserdiskussion der 100 stärksten Stämme/ha (d100) gezeigt. (c) Der laufende jährliche Volumenzuwachs (IV) sinkt zunächst mit zunehmender Ein- griffstärken deutlich ab. Erst in höherem Alter gleichen sich die Werte wieder an. (d) Insgesamt ist der durchschnittliche jährliche Gesamtzuwachs (dGz) für die einzelnen Behandlungsvarianten recht unterschiedlich.

Literaturverzeichnis

GANZHOFER, A. V. (1877): Das forstliche Versuchswesen. Bd. 1, H. 1, im Selbstverlag des Herausgebers, München

443