Deutscher Forstverein e.V.
60. Jahrestagung

Ein Wald für alle Fälle ...
Nachhaltige Forstwirtschaft:
zukenftweisend und umweltbewusst

20.9. - 23.9.2001 in Dresden

Kongressbericht

Prognose des Fichten (Picea abies)-Starkholzaufkommens auf der Basis von Inventurdaten
Peter Biber, München, Ralf Moshammer, Hans Pretsch

Kurzfassung:


Schlüsselwörter: Fichte (Picea abies), Starkholzaufkommen, Prognose, Waldwachstumssimulator, Inventurdaten.

Predicting the supply of large-dimensional Norway spruce (Picea abies) stemwood based on inventory data
Abstract:
A method is presented, which is used to perform scenario analyses concerning the future supply of large dimensioned Norway spruce (Picea abies) from the Bavarian State Forest. Possible problems for timber market policy, connected to an undue accumulation of large dimensioned
timber, form the background of question. In contrast to simple extrapolations of the status quo scenario analyses are regarded as the method of choice, because they allow to estimate the silvicultural scope of the Bavarian State Forest Service. As tool for the projection of forest development the single-tree-based growth simulator SILVA has been used. Provided with an interface for sample inventory data the simulator allows to perform scenario calculations on large area forest development.

The version of SILVA described here is able to process sample inventory data as provided by the Bavarian State Forest Service. For this purpose all inventory plots have to be accounted to certain strata. Points of a stratum have to be sufficiently comparable in terms of site conditions, species composition and level of development. All inventory points of a stratum are used to set up a virtual representative stand. These stands can be projected with SILVA as representatives for the whole stratum. For each stratum management rules can be defined separately.

The Bavarian Forest Inventory data were processed in a corresponding way. In close coordination with the Bavarian State Forest Service three overall scenarios were defined. The first scenario we call „normal variant“. Here, it is assumed that spruce will be treated in future by the same concepts as nowadays. The second scenario is called „extreme variant“ which assumes that the Forest Service will apply considerably heavier thinnings than nowadays in future. The third scenario is called „null variant“. This scenario assumes that the Forest Service will stop all active harvesting. The projection time is set to 30 years.

As an example for results we show the Bavaria-wide expected development of large-dimensioned standing timber volume of Norway spruce. The null-variant leads to an extreme increase of standing large-dimensioned timber volume. The normal variant also shows an increase in the beginning but a stabilization on a certain level later. During the extreme variant we observe a decrease of standing timber volume first, followed by a stabilization on a low level. These scenarios show the silvicultural scope of the Bavarian State Forest Service concerning large-dimensioned timber of Norway spruce.

Repeatedly, this scenario analysis substantiated how important it is for successful model application to establish an intensive dialogue between model users and modelers.

Key words: Norway spruce (Picea abies), supply of large-dimensioned timber, prognosis, forest growth simulator, inventory data.

1 Problemstellung


2 Methode


Ebenso wie die Behandlungskonzepte können die Prognoseergebnisse auf keine kleinere Einheit als ein Stratum bezogen werden. Die von SILVA zur Verfügung gestellten Ausgabedaten umfassen alle relevanten Waldwachstumsdaten, die für jeden Strateneinheit. In der Regel wird durch die Berechnung der Ausgaben je nach Bedarf der Benutzer entsprechend monetäre und strukturelle Informationen.

3. Vorgehen

Zusammenstellung

In Abstimmung mit der Bayerischen Staatsforsterwartung wurde der Prognosezeitraum auf 30 Jahre festgesetzt, und es wurden drei generelle Szenarien definiert: 1. eine Normalvariante, die nicht unterstellt, dass die derzeitige Behandlung der Fichte im Bayerischen Staatswald in gleicher Weise wie bisher fortgesetzt wird, 2. eine Extremvariante, die unterstellt, dass die Bayerische Staatsforsterwartung ihre Nutzungen der Baumart Fichte erheblich erhöht, 3. eine Nullvariante, die unterstellt, dass die Staatsforsterwartung auf eine weitere aktive Bewirtschaftung der Fichte verzichtet.

Die drei Varianten umfassen den Handlungsspielraum der Staatsforsterwartung. Für die Normalvariante, die potentiell stärkste Starkholzkumulation angibt, ist als Referenz daher geeignet. Die Extremvariante nähert sich aus heutiger Sicht der Grenze einer praktikablen Intensivierung der Fichtenutzung, während die Normalvariante das aus gegenwärtiger Sicht wahrscheinlichste Szenario darstellt.

Prämisse der Szenarioanalyse war eine stark holzförmige, Fichten mit durchschnittlichen Durchmessern ab 10 cm einschließlich. Weitere war eine räumliche Grobgliederung der Ergebnisse nach sieben Forstgesellschaftenbereichen, insbesondere Berggebirge, als Verwaltungsseinheit gewünscht. Die Ergebnisse konzentrierten sich auf die Holzproduktion, wobei eine Aufschlüsselung nach 1 cm-Durchmesserstufen erwünscht und problemlos möglich war.

Datenbasis

Aus der Datenbank des Bayerischen Staatsministeriums für Landwirtschaft und Forsten wurden alle Inventurpunkte ausgewählt, für die das Alter der Fichte mit mindestens 20 Jahren und der Fichtenanteil mit mindestens 10 % angegeben werden. Die Zahl dieser Inventurpunkte belief sich auf etwa 316.000. Auf diese Weise wurden rund 96 % des Fichtenvorrates im Bayerischen Staatswald in die Prognose einbezogen. Es wurde jeweils nur der Stand der letzten Aufnahme verwendet. Wiederholungsannahmen sind bei dieser Methode nicht notwendig. Das verwendete Datenmaterial spiegelt in etwa den Durchschnitt der Bestände der Fichte im Bayerischen Staatswald von vor fünf Jahren wider.

Stratifikation

Die Stratifikation wurde nach den vier Kriterien Verwaltungseinheit, Verstand, Fichten-Anteil und Fichten-Alter gebildet. Im Folgenden werden die entsprechenden Stratendifinitionen gezeigt:

<table>
<thead>
<tr>
<th>Phasen</th>
<th>Oberhöhen-</th>
<th>Behandlungskonzept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bis 22 m</td>
<td>2-Bau-Durchführung, Ermaßung von 2-3 Besätzen je 2-Bau</td>
</tr>
<tr>
<td>2</td>
<td>22-35 m</td>
<td>Hebeholz</td>
</tr>
<tr>
<td>3</td>
<td>ab 36 m</td>
<td>Einstreuung im Sichtbereich, Abschaftzeitraum 30 Jahre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Fichten-Anteil</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 - 90 %</td>
<td>Fichtenreinbestände</td>
</tr>
<tr>
<td>2</td>
<td>89 - 75 %</td>
<td>Fi-dominierte Bestände</td>
</tr>
<tr>
<td>3</td>
<td>74 - 50 %</td>
<td>Fi-reiche Bestände</td>
</tr>
<tr>
<td>4</td>
<td>49 - 25 %</td>
<td>Bestände mit Fichtenbeteiligung</td>
</tr>
<tr>
<td>5</td>
<td>24 - 10 %</td>
<td>Fichte als Nebenbaumart</td>
</tr>
</tbody>
</table>

1. Verwaltungseinheit


2. Standort

Der Standort wurde nach Wuchsbeizirksebene unterschieden. Je Wuchsbezirk wurde pascal die Standortseinheit eingestuft, auf der die Fichtenbestände flächenmäßig am häufigsten vorkamen.

3. Fichtenanteil

Es wurde nach fünf Fichtenanteilsstufen klassifiziert. Grund dafür ist, dass der Wachstumssimulator SILVA im Lade, die Auswirkungen unterschiedlicher Mischungen auf die Wachstumsdynamik von Wäldern nachzubilden. Die Anteilsstufen für die entsprechende Fläche wie folgt definiert (Tabelle 2):

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Fichten-Anteil</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 - 90 %</td>
<td>Fichtenreinbestände</td>
</tr>
<tr>
<td>2</td>
<td>89 - 75 %</td>
<td>Fi-dominierte Bestände</td>
</tr>
<tr>
<td>3</td>
<td>74 - 50 %</td>
<td>Fi-reiche Bestände</td>
</tr>
<tr>
<td>4</td>
<td>49 - 25 %</td>
<td>Bestände mit Fichtenbeteiligung</td>
</tr>
<tr>
<td>5</td>
<td>24 - 10 %</td>
<td>Fichte als Nebenbaumart</td>
</tr>
</tbody>
</table>

4. Fichten-Alter

Bei der Unterscheidung nach den Altersstufen der Fichte wurden 6 Stufen nach dem in Tabelle 3 gezeigten Schema gebildet.


<table>
<thead>
<tr>
<th>Stufe</th>
<th>Alterspanne (Jahre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 - 40</td>
</tr>
<tr>
<td>2</td>
<td>41 - 60</td>
</tr>
<tr>
<td>3</td>
<td>61 - 80</td>
</tr>
<tr>
<td>4</td>
<td>81 - 100</td>
</tr>
<tr>
<td>5</td>
<td>101 - 120</td>
</tr>
<tr>
<td>6</td>
<td>über 120 Jahre</td>
</tr>
</tbody>
</table>
Behandlungskonzepte


Sowohl die Stratendefinition als auch die Definition der korrespondierenden Behandlungsprogramme fanden in intensiver Abstimmung mit der Bayerischen Staatsforstverwaltung in Gestalt eines iterativen Prozesses statt. Auf diese Weise ist gewährleistet, dass die Simulationsergebnisse als Entscheidungshilfen brauchbar und interpretierbar sind. Abbildung 1 zeigt beispielhaft Auszüge aus den Behandlungseinstellungen, die im Zuge der Fichten-Starkholzprognose zum Einsatz gekommen sind.

4 Ergebnisse

Für jedes der drei Szenarien wurde ein umfangreicher Satz an Ergebnissen erzeugt. Dazu gehören sowohl summarishe Entwicklungen von Starkholzvorräten und Nutzungen auf bayerischer und Forstdirektionsebene als auch Aufschlüsselungen derselben Größen nach 1 cm-Durchmessersstufen.

Beispielhaft werden im Folgenden nur die bayerweit erwarteten Entwicklungen der verbleibenden Starkholzvorräte gezeigt (Abbildung 2). Schon in qualitativer Hinsicht zeigen die

Abb. 1: Beispiel für die Einsteuerung von Nutzungskonzepten in SILVA: Junge Fichtenbestände in der Forstdirektion Schwaben. Example for defining forest management concepts for SILVA: young spruce stands belonging to the administration unit „Schwaben“.

drei Kurven deutliche Unterschiede. So ist bei der Nullvariante ein deutlich konkaver Anstieg der Vorratsentwicklung festzustellen, was darauf hindeutet, dass auch nach einem 30-jährigen Zeitraum bei Unterlassen aller aktiven Eingriffe der maximal erreichbaren Starkholzvorräte noch nicht annähernd erreicht werden. Im Gegensatz dazu zeigt die Normalvariante — auf wesentlich niedrigerem Niveau als die Nullvariante — einen typischen S-förmigen Wachstumsverlauf mit zunächst konkavem und später konvexem Anstieg. Ein deutliches Einschwenken auf einen stationären Wert ist festzustellen, was darauf hindeutet, dass die Normalvariante zunächst zu einem deutlichen Anstieg des Starkholzvorrates, gegen Ende des Betrachtungszeitraums zu einer Stabilisierung auf höherem Niveau führt.


5 Diskussion
Szenarioanalysen

Zur Wahl der Methode

Vor diesem Hintergrund erscheint der höhere Aufwand, der zweifellos bei der Anwendung von einzelbaumbasierten Wachstumssimulatoren wie SILVA geboten ist, gerechtfertigt. Durch die Erklärung der Bestandesdynamik von der Einzelbaumebene her können Behandlungs- und Mischungseffekte bestmöglich nachgebildet werden. Im Fall von SILVA verfügen wir zudem über ein Werkzeug, das für die wichtigsten Wirtschaftsbaumarten in Deutschland, insbesondere die Fichte, stabil kalibriert ist und deren aktuelle Wachstumswirklichkeit gut widerspiegelt.


Zusammenarbeit Anwender-Modellierer
Literatur


