Climatic controls of decomposition drive the global biogeography of forest–tree symbioses


The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species2, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

Microbial symbionts strongly influence the functioning of forest ecosystems. Root-associated microorganisms exploit inorganic, organic2 and/or atmospheric forms of nutrients that enable plant growth1, determine how trees respond to increased concentrations of CO2, regulate the respiratory activity of soil microorganisms3,8 and affect plant species diversity by altering the strength of conspecific negative density dependence9. Despite the growing recognition of the importance of root symbioses for forest functioning10,11 and the potential to integrate symbiotic state into Earth system models that predict functional changes to the terrestrial biosphere10, we lack spatially explicit quantitative maps of root symbioses at the global scale. Quantitative maps of tree symbiotic states would link the biogeography of functional traits of belowground microbial symbionts with their 3.1 trillion host trees11, which are spread across Earth’s forests, woodlands and savannas.

The dominant guilds of tree root symbionts—arbuscular mycorrhizal fungal, ectomycorrhizal fungi, ericoid mycorrhizal fungi and nitrogen-fixing bacteria (N-fixers)—are all based on the exchange of plant photosynthate for limiting macronutrients. Arbuscular mycorrhizal symbiosis evolved nearly 500 million years ago, and ectomycorrhizal, ericoid mycorrhizal and N-fixer plant taxa have evolved multiple times from an arbuscular-mycorrhizal basal state. Plants that are involved in arbuscular mycorrhizal symbiosis comprise nearly 80% of all terrestrial plant species; these plants principally rely on arbuscular mycorrhizal fungi for enhancing mineral phosphorus uptake12. In contrast to arbuscular mycorrhizal fungi, ectomycorrhizal fungi evolved from multiple lineages of saprotrophic ancestors and, as a result, some ectomycorrhizal fungi are capable of directly mobilizing organic sources of soil nutrients (particularly nitrogen)3. Associations with ectomycorrhizal fungi—but not arbuscular mycorrhizal fungi—have previously been shown to enable trees to accelerate photosynthesis in response to increased concentrations of atmospheric CO2 when soil nitrogen is limiting9, and to inhibit soil respiration by decomposer microorganisms3,8. Because increased plant photosynthesis and decreased soil respiration both reduce atmospheric CO2 concentrations, the ectomycorrhizal symbiosis is associated with buffering the Earth’s climate against anthropogenic change.

In contrast to mycorrhizal fungi, which extract nutrients from the soil, symbiotic N-fixers (Rhizobia and Actinobacteria) convert atmospheric N2 to plant-usable forms. Symbiotic N-fixers are responsible for a large fraction of biological soil-nitrogen inputs, which can increase nitrogen availability in forests in which N-fixers are locally abundant13. Symbioses with either N-fixers or ectomycorrhizal fungi often demand more plant photosynthate than does arbuscular mycorrhizal symbiosis12,14,15. Because tree growth and reproduction are limited by access to inorganic, organic and atmospheric sources of nitrogen, the distribution of root symbioses is likely to reflect environmental conditions that maximize the cost-benefit ratio of symbiotic exchange as well as physiological constraints on the different symbionts.

One of the earliest efforts16 to understand the functional biogeography of plant root symbioses categorically classified biomes by their perceived dominant mycorrhizal type, and hypothesized that seasonal climates favour hosts that associate with ectomycorrhizal fungi (owing to the ability of these hosts to compete directly for organic nitrogen). By contrast, it has more recently been proposed that sensitivity to low temperatures has prevented N-fixers from dominating outside of the tropics, despite the potential for nitrogen fixation to alleviate nitrogen limitation in boreal forests15,17. However, global-scale tests of...
these proposed biogeographical patterns and their climate drivers are lacking. To address this, we compiled a global ground-sourced survey database to reveal the numerical abundances of each type of symbiosis across the globe. Such a database is essential for identifying the potential mechanisms that underlie transitions in forest symbiotic state along climatic gradients.18,19

We determined the abundance of tree symbioses using an extension of the plot-based Global Forest Biodiversity (GFB) database that we term the GFBi; this extended database contains over 1.1 million forest inventory plots of individual-based measurement records, from which we derive abundance information for entire tree communities (Fig. 1). Using published literature on the evolutionary histories of mycorrhizal and N-fixer symbioses, we assigned plant species from the GFBi to one of five root-associated symbiotic guilds: arbuscular mycorrhizal, ectomycorrhizal, ericoid mycorrhizal, N-fixer and weakly arbuscular or non-mycorrhizal. We then used the random-forest algorithm with K-fold cross-validation to determine the importance and influence of variables related to climate, soil chemistry, vegetation and topography on the relative abundance of each tree symbiotic guild (Fig. 2). Because decomposition is the dominant process by which soil nutrients become available to plants, we calculated annual and quarterly decomposition coefficients according to the Yasso07 model, which describes how temperature and precipitation gradients influence mass-loss rates of different chemical pools of leaf litter (with parameters fit using a previous global study of leaf decomposition) (Fig. 3, Supplementary Fig. 5). Finally, we projected our predictive models across the globe over the extent of global biomes that fell within the multivariate distribution of our model training data (Fig. 4, Supplementary Figs. 14, 15; see Methods for full description).

Our analysis shows that each one of the three most-numerically abundant guilds of tree symbiosis has a reliable environmental signature, with the four most-important predictors accounting for 81, 79 and 52% of the total variability in relative basal area for ectomycorrhizal, arbuscular mycorrhizal and N-fixer symbioses, respectively. Given the relative rarity of ericoid mycorrhizal and weakly arbuscular or non-mycorrhizal symbiotic states among trees, models for these symbioses lack strong predictive power—although the raw data do identify some local abundance hotspots for ericoid mycorrhizal symbiosis (Supplementary Fig. 1). As a result, we focus on the three major tree symbiotic states (ectomycorrhizal, arbuscular mycorrhizal and N-fixer). Despite the fact that data from North America and South America constitute 65% of the training data (at the 1°-by-1° grid scale), our models accurately predict the proportional abundances of the three major symbioses across all major geographical regions (Supplementary Fig. 10). The high performance of our models—which is robust to K-fold cross-validation and to rarefying samples such that all continents are represented with equal depth (Supplementary Figs. 11, 12)—suggests that regional variations in climate (including indirect effects on decomposition) and soil pH (for N-fixers) are the primary factors that influence the relative dominance of each guild at the global scale; geographical origin explained only approximately 2–5% of the variability in residual relative abundance (Supplementary Table 8, Supplementary Fig. 10).

Whereas a recent global analysis of root traits concluded that plant evolution has favoured a reduced dependence on mycorrhizal fungi,20 we find that trees that associate with the relatively more carbon-demanding and recently derived ectomycorrhizal fungi2,14 represent the dominant tree symbiosis. By taking the average proportion of ectomycorrhizal trees, weighted by spatially explicit global predictions for tree stem density,11 we estimate that approximately 60% of tree stems on earth are ectomycorrhizal—despite the fact that only 2% of overall plant species associate with ectomycorrhizal fungi (versus nearly 80% that associate with arbuscular mycorrhizal fungi).7 Outside of the tropics, the estimate for the relative abundance of ectomycorrhizal symbiosis increases to approximately 80% of trees.

Turnover among the major symbiotic guilds results in a tri-modal latitudinal abundance gradient, in which the proportion of ectomycorrhizal trees increases (and the proportion of arbuscular mycorrhizal trees decreases) with distance from the equator and the upper quantiles of nitrogen-fixing trees reach a peak in abundance in the arid zone at around 30° N or S (Figs. 3a and 4). These trends are driven by abrupt transitional regions along continental climatic gradients (Fig. 2), which skew the distribution of symbioses among biomes (Fig. 3a) and drive strong patterns across geographical and topographic features that influence climate. Moving north or south from the equator, the first transitional zone separates warm (aseasonal) tropical broadleaf forests dominated by arbuscular mycorrhizal symbiosis (>75% median basal area versus 8% for ectomycorrhizal trees) from the rest of the world forest system, which is dominated by ectomycorrhizal symbiosis (Figs. 2a, b and 3a). The transition zone occurs across the globe at around 25° N and S, just beyond the dry tropical broadleaf forests (which have 25% of their basal area consisting of ectomycorrhizal trees) (Fig. 3a) in which average monthly temperature variation reaches 3–5 °C (temperature seasonality) (Fig. 2a, b).

Moving further north or south, the second transitional climate zone separates regions in which decomposition coefficients during the warmest quarter of the year are less than two (Fig. 3b gives the associated temperature and precipitation ranges). In North America and China, this transition zone occurs around 50° N, and separates the mixed arbuscular mycorrhizal and ectomycorrhizal temperate forests
Fig. 2 | A small number of environmental variables predict the majority of global turnover in forest symbiotic status. a–c, Partial feature contributions of different environmental variables to forest symbiotic state. Each row plots the shape of the contribution of the four most-important predictors of the proportion of tree basal area that belongs to the ectomycorrhizal (a), arbuscular mycorrhizal (b) and N-fixer (c) symbiotic guilds ($n = 2,768$). Variables are listed in declining importance from left to right, as determined by the increase in node purity (inc. node purity), and with points coloured with a red to green to blue gradient according to their position on the x axis of the most-important variable (left-most panels for each guild), allowing cross-visualization between predictors. Each panel lists two measures of variable importance; inc. node purity (used for sorting) and percentage increase in mean square error (% inc. MSE) (see Supplementary Information). The abundance of each type of symbiont transitions sharply along climatic gradients, which suggests that sites near the threshold are particularly vulnerable to switching their dominant symbiont guild as climate changes. Warmest and wettest quarter, the warmest and wettest quarters of the year, respectively.

from their neighbouring ectomycorrhizal-dominated boreal forests (75 and 100% of their basal area, respectively, consisting of ectomycorrhizal trees) (Fig. 3a). This transitional decomposition zone is not present in western Europe, which has a temperature seasonality of $>5\, ^\circ C$ but lacks sufficiently wet summers to accelerate decomposition coefficients beyond the values that are associated with mixed arbuscular mycorrhizal and ectomycorrhizal forests. The latitudinal transitions in symbiotic state observed among biomes are mirrored by within-biome transitions along elevation gradients. For example, in tropical Mexico decomposition coefficients of less than two during the warmest and wettest quarters of the year occur along the slopes of the Sierra Madre, where a mixture of arbuscular-mycorrhizal and N-fixer woodlands in arid climates transition to ectomycorrhizal-dominated tropical coniferous forests (75% basal area) (Figs. 3a and 4a–c, Supplementary Figs. 16–18). The Southern Hemisphere—which lacks the landmass to support extensive boreal forests—experiences a similar latitudinal transition in decomposition rates along the ecotone that separates its tropical and temperate biomes, at around 28°S.

The abrupt transitions that we detected between forest symbiotic states along environmental gradients suggest that positive feedback effects may exist between climatic and biological controls of decomposition\cite{10,20}. In contrast to arbuscular mycorrhizal fungi, some

Fig. 3 | The distribution of forest symbiotic status across biomes is related to climatic controls over decomposition. a, Biome level summaries of the median ± 1 quartile of the predicted percentage of tree basal area per biome for ectomycorrhizal, arbuscular mycorrhizal and N-fixer symbiotic guilds ($n = 100$ random samples per biome). b, The dependency of decomposition coefficients ($k$, solid and dotted lines; in the region between the solid lines, the model transitions abruptly between dominant symbiotic status) on temperature and precipitation during the warmest quarter with respect to predicted dominance of mycorrhizal symbiosis. The transition from arbuscular mycorrhizal forests to ectomycorrhizal forests between $k = 1$ and $k = 2$ is abrupt, which is consistent with positive feedback between climatic and biological controls of decomposition.
ectomycorrhizal fungi can use oxidative enzymes to mineralize organic nutrients from leaf litter and convert nutrients to plant-usable forms. Relative to arbuscular mycorrhizal trees, the leaf litter of ectomycorrhizal trees is also chemically more resistant to decomposition, and has higher C:N ratios and higher concentrations of decomposition-inhibiting secondary compounds. Thus, ectomycorrhizal leaf litter can exacerbate climatic barriers to decomposition and promote conditions in which ectomycorrhizal fungi have nutrient-acquiring abilities that are superior to those of arbuscular mycorrhizal fungi. A recent game-theoretical model has shown that positive feedback effects between plants and soil nutrients can lead to local bistability in mycorrhizal symbiosis. Such positive feedback effects are also known to cause abrupt ecosystem transitions along smooth environmental gradients between woodlands and grasses: trees suppress fires (which promotes seedling recruitment), whereas grass fuels fires that kill tree seedlings. The existence of abrupt transitions also suggests that forests in transitional regions along decomposition gradients should be susceptible to marked turnover in symbiotic state with future environmental changes.

To illustrate the sensitivity of global patterns of tree symbiosis to climate change, we use the relationships that we observed for current climates to project potential changes in the symbiotic status of forests in the future. Relative to our global predictions that use the most-recent climate data, model predictions that use the projected climates for 2070 suggest that the abundance of ectomycorrhizal trees will decline by as much as 10% (using a relative concentration pathway of 8.5 W per m²) (Supplementary Fig. 24). Our models predict that the largest declines in ectomycorrhizal abundance will occur along the boreal–temperate ecotone, where small increases in climatic decomposition coefficients cause abrupt transitions to arbuscular mycorrhizal forests (Fig. 2a, b). Although our model does not estimate the time lag between climate change and forest community responses, the predicted decline in ectomycorrhizal trees corroborates the results of common garden transfer and simulated warming experiments, which have demonstrated that some important ectomycorrhizal hosts will decline at the boreal–temperate ecotone under altered climate conditions.

The change in dominant nutrient-exchange symbioses along climate gradients highlights the interconnection between atmospheric and soil compartments of the biosphere. The transition from arbuscular mycorrhizal to ectomycorrhizal dominance corresponds with a shift from phosphorus to nitrogen limitation of plant growth with increasing latitude. Including published global projections of total soil nitrogen or phosphorus, microbial nitrogen or soil phosphorus fractions (labile, occluded, organic and apatite) did not increase the amount of variation explained by the model, or alter the variables identified as most important; we therefore dropped these projections from our analysis. However, our finding that climatic controls of decomposition are the best predictors of dominant mycorrhizal associations provides a mechanistic link between symbiont physiology and climatic controls on the release of soil nutrients from leaf litter. These findings are consistent with Read’s hypothesis that slow decomposition at high latitudes favours ectomycorrhizal fungi owing to their increased capacity to liberate organic nutrients. Thus, although more experiments are necessary to understand the specific mechanism by which nutrient competition favours the dominance of arbuscular mycorrhizal or ectomycorrhizal symbioses, we propose that the latitudinal and elevational transitions from arbuscular-mycorrhizal-dominated to ectomycorrhizal-dominated forests be named ‘Read’s rule’.

Our analyses focus on prediction at large spatial scales that are appropriate to the available data, but our findings with respect to Read’s rule also provide insight into how soil factors structure the fine-scale distributions of tree symbioses within our grid cells. For example, at a coarse scale, we find that ectomycorrhizal trees are relatively rare in many wet tropical forests; however, individual tropical sites in our raw data span the full range from 0 to 100% basal area dominated by ectomycorrhizal trees. In much of the wet tropics, these ectomycorrhizal-dominated sites exist as outliers within a matrix of predominantly arbuscular mycorrhizal trees. In an apparent exception that proves Read’s rule, in aseasonal, warm neotropical climates—which accelerate leaf decomposition and promote the regional dominance of arbuscular mycorrhizal symbioses (Fig. 3)—ectomycorrhizal-dominated tree stands can develop in sites in which poor soils and recalcitrant litter slow the rates of decomposition and nitrogen mineralization. Landscape-scale variation in the relative abundance of symbiotic states also changes along climate gradients: variability is highest in xeric and temperate biomes (Supplementary Figs. 3, 4), which suggests that the potential of local nutrient variability to favour particular symbioses is contingent on climate.

Whereas ectomycorrhizal trees are associated with ecosystems in which plant growth is thought to be primarily nitrogen-limited, N-fixers are not. Our results highlight the global extent of the apparent ‘nitrogen cycling paradox’ in which some metrics suggest that nitrogen limitation is greater in the temperate zone and yet nitrogen-fixing trees are relatively more common in the tropics (Fig. 3a). We find that N-fixers—which we estimate represent 7% of all trees—dominate forests with annual maximum temperatures >35 °C and alkaline soils, particularly in North America and Africa (Fig. 2c). N-fixers have the highest relative abundance in xeric shrublands (24%), tropical savannahs (21%) and dry broadleaf forest biomes (20%), but are nearly absent from boreal forests (<1%) (Figs. 3a and 4). The decline in N-fixers tree
abundance with increasing latitude that we observed is also associated with a previously documented latitudinal shift in the identity of nitrogen-fixing microorganisms, from facultative rhizobial N-fixers in tropical forests to obligate actinorhizal N-fixers in temperate forests. Our data are not capable of fully disentangling the several hypotheses that have previously been proposed to reconcile the nitrogen cycling paradox. However, our results are consistent with the model prediction and regional empirical evidence that nitrogen-fixing trees are particularly important in arid biomes. Based primarily on the observed positive nonlinear association of the relative abundance of N-fixers with the mean temperature of the hottest month (Fig. 2c), our models predict a twofold increase in relative abundance of N-fixers when transitioning from humid to dry tropical forest biomes (Fig. 3a).

Although soil microorganisms are a dominant component of forests in terms of both diversity and ecosystem functioning, identifying global-scale microbial biogeographical patterns remains an ongoing research priority. Our analyses confirm that Read’s rule—which is one of the first proposed biogeographical rules specific to microbial symbioses—successfully describes global transitions between mycorrhizal guilds. More generally, climate driven turnover among the major symbioses between plants and microorganisms represents a fundamental biological pattern in the Earth system, as forests transition from low-latitude arbuscular mycorrhizal through N-fixer to high-latitude ectomycorrhizal ecosystems. The predictions of our model (available in the Supplementary Data as global raster layers) can now be used to represent these critical ecosystem variations in global biogeochemical models that are used to predict climate—biogeochemical feedback effects within and between trees, soils and the atmosphere. Additionally, the raster layer that contains the proportion of nitrogen-fixing trees can be used to map potential symbiotic nitrogen fixation, which links atmospheric pools of carbon and nitrogen. Future work can extend our findings to incorporate multiple plant growth forms and non-forested biomes (in which similar patterns are likely to exist) to generate a complete global perspective. Our predictive maps leverage a comprehensive global forest dataset to generate a quantitative global map of forest tree symbioses, and demonstrate how nutritional mutualisms are coupled with the global distribution of plant communities.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-019-1128-0.

Received: 27 April 2018; Accepted: 21 March 2019; Published online 15 May 2019.


Acknowledgements This work was made possible by the Global Forest Biodiversity Database, which represents the work of over 200 independent investigators and their public and private funding agencies (see Supplementary Acknowledgements).

Reviewer information Nature thanks Martin Biodartondo, David Bohan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions K.G.P. and T.W.C. conceived the study; T.W.C., J.L., P.B.R., G.D.A.W. and M.E.V.N. contributed to data compilation and analysis; B.S.S., T.W.C., M.E.V.N. and K.G.P. wrote the initial manuscript; B.S.S., T.W.C., J.L., M.E.V.N., G.D.A.W., P.B.R., G.N., S.d.-M., M.Z., N.P., B.H., X.Z. and C.Z. conceived and organized the GBfi database; K.G.P., B.S.S., G.D.A.W. and M.E.V.N. compiled the symbiosis database; B.S.S. carried out the primary data analysis; M.E.V.N. and D.R. contributed to writing the primary drafts and analysis; B.S.S., T.W.C., M.E.V.N. and K.G.P. wrote the supplementary drafts; B.S.S., T.W.C., J.L., M.E.V.N., G.D.A.W., P.B.R., G.N., S.d.-M., M.Z., N.P., B.H., X.Z., C.Z. and K.G.P. made substantial revisions to all versions of the manuscript; all other named authors provided forest inventory data and commented on the manuscript.

Competing interests The authors declare no competing interests.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1128-0. Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence and requests for materials should be addressed to T.W.C., J.L. or K.G.P.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
City, Mexico. 114Universidad del Tolima, Ibagué, Colombia. 115Colegio de Profesiones Forestales de Cochabamba, Cochabamba, Bolivia. 125Jardín Botánico de Missouri, Oxapampa, Peru. 127Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru. 128Department of Environmental Management, School of Environmental Science and Management, Independent University Bangladesh, Dhaka, Bangladesh. 129Instituto de Silvicultura e Indústria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico. 130Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador. 123Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland. 131Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica. 132Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA. 133Centre for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada. 134N. V. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia. 135Department of Forestry, World Research Institute, Washington, DC, USA. 136Department of Ecology and Environmental Sciences, Pooncherry University, Puducherry, India. 137Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Gallegos, Argentina. 138School of Social Sciences and Psychology (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia. 139Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 140Laboratório de Dendrologia e Silvaçura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Bahia, Brazil. 132Jardín Botánico de Medellín, Medellín, Colombia. 133Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany. 134Universidad Nacional de la Amazonia Peruana, Iquitos, Peru. 135Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia. 146Department of Biological Sciences, Boise State University, Boise, ID, USA. 147Tropical Biodiversity Section, MUSE - Museo delle Scienze, Trento, Italy. 148Department of Biology, University of Florence, Florence, Italy. 149Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India. 150Faculty of Biological Sciences, University of Stellenbosch, Stellenbosch, South Africa. 151Key Laboratory of Tropical Forest Ecology, Institute of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China. 152Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA. 153Manakai Whenua-Landcare Research, Lincoln, New Zealand. 154Department of Wetland Ecology, Institute for Geography and Geooecology, Karlruhe Institute for Technology, Karlsruhe, Germany. 155Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname. 156Tropenbios International, Wageningen, The Netherlands. 157Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana. 158Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Ekaterinburg, Russia. 159UNGGlobal, Museo de Ciencias Naturales, CSIC, Madrid, Spain. 160Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany. 161Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam. 162Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Vila Real, Portugal. 163AGAgricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal. 164Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil. 165Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa. 166Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China. 167Key Laboratory of Tropical Forest Ecology, Institute of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China. 168Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA. 169Manakai Whenua-Landcare Research, Lincoln, New Zealand. 170Department of Wetland Ecology, Institute for Geography and Geooecology, Karlruhe Institute for Technology, Karlsruhe, Germany. 171Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname. 172Tropenbios International, Wageningen, The Netherlands. 173Polish State Forests, Coordination Center for Environmental Projects, Warsaw, Poland. 174Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil. 175Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA. 176Flamingo Land Ltd, Kirby Misperton, UK. 177Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all’Adige, Italy. 178Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia. 179Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile. 180Laboratorio de Biometria, Universidad de La Frontera, Temuco, Chile. 181Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
METHODS

We quantified the relative abundance of tree symbiotic guilds across >1.1 million forest census plots combined in the GFBi database, an extension of the plot-based GFB database34. The GFBi database consists of individual-based data that we compiled from all the regional and national GFB forest-inventory datasets. The standardized GFBi data frame (that is, tree list) comprises tree identifier (ID) (a unique number assigned to each individual tree); plot ID (a unique string assigned to each plot); plot coordinates, in decimal degrees of the WGS84 datum; tree size, in diameter-at-breast-height; trees-per-hectare expansion factor; year of measurement; dataset name (a unique name assigned to each forest inventory dataset); and binomial species names of trees.

We checked all species names from different forest inventory datasets for errors in three steps. First, we extracted scientific names from original datasets, and kept only the names of genus and species (authority names are removed). Next, we compiled all the species names into five general species lists (one for each continent). Finally, we verified individual species names against 23 online taxonomic databases using the ‘taxize’ package of the R programming language35-37. We assigned each morphospecies a unique name that comprised the genus, the string ‘spp’, followed by the dataset name and a unique number for that species. For example, ‘Picea sppCN1’ and ‘Picea sppCN2’ represent two different species under the genus Picea, observed in the first Chinese dataset (CNI).

We derived plot-level abundance information in terms of species-abundance matrices. Each species-abundance matrix consisted of the number of individually by species (column vectors) within individual sample plots (row vectors). In addition, a plot-level information was also added to the matrices, including plot ID, dataset name, plot coordinates, the year of measurement and basal area (that is, the total cross-sectional areas (in m²) of living trees per one hectare of ground area).

Tree genera were assigned to a plant family using a plant taxonomy lookup table generated by W. Cornwell (hosted on Github, https://github.com/traitecovo/taxonlookup), which uses the accepted taxonomy from ‘The Plant List’ (http://www.thelplantlist.org/). The majority (96.5%) of genera of the species in the GFBi were successfully matched to family; for those that could not be assigned, we manually checked the genus and species in the GFBi against synonyms from The Plant List. Of the 1,038 mismatches that remained after automated assignment to families, an additional 440 genera were assigned to family either by updating older genera and species names with their more-recent synonyms or by correcting obvious misspellings. The remaining 598 entries that could not be matched to family were excluded from further analysis.

We used a taxonomically informed approach to assign symbiotic states to plant species from the GFBi. Plant species were assigned to one of five symbiotic guilds; ectomycorrhizal, arbuscular mycorrhizal, ericoid mycorrhizal, weakly arbuscular mycorrhizal exclusive (AMNM)40. Although we did not model the relative abundance of ericoid mycorrhizal trees (owing to their rarity), we have included a map of their relative abundance from our grid (Supplementary Fig. 1). We also include the full species list as Supplementary Data; this list includes the columns used to assign species to guilds. We also include a list of families and genera assigned to all guilds except the AMNM category (Supplementary Tables 2–5), with notes for cases that are more likely to be mis-assigned, we excluded them from the nitrogen-fixation category. The N-fixers group contains species that are colonized by arbuscular mycorrhizal fungi (for example, most genera from Leguminosae) and others that are colonized by ectomycorrhizal fungi (for example, Abies sp.).

Ectomycorrhizal and nitrogen-fixers have the ability to form arbuscular mycorrhizal symbioses. Thus, a tree species is most likely to be arbuscular mycorrhizal if it does not form associations with another symbiotic guild (or forgoes root symbiosis entirely), as evidenced by its inclusion in exhaustive databases of plant symbiotic state35-37,40. In keeping with other large-scale studies in the field39, we assigned tree species from the GFBi database an arbuscular-mycorrhizal-exclusive state if they belonged to taxa that were not matched to ectomycorrhizal, ericoid mycorrhizal, AMN or N-fixed symbioses. Thus, the arbuscular mycorrhizal and N-fixer groups in our dataset are non-overlapping, despite the fact that most N-fixers also associate with arbuscular mycorrhizal fungi.

The proportions of tree basal area and tree individuals were aggregated to a 1°-by-1° grid by taking the weighted average of the plot-level proportions (Supplementary Table 6). This resulted in a total of 2,768 grid cells, each with a score for the proportional abundance of ectomycorrhizal, arbuscular mycorrhizal, N-fixer, ericoid mycorrhizal and AMNM trees. We calculated two measures of the proportion of tree basal area to leaf area index, total stem density, enhanced vegetation index means and N-fixer (relating to soil texture and bulk density), 26 vegetative indices (relating to elevation and hillshade) (Supplementary Table 7). Because decomposition is the dominant process by which soil nutrients become available to plants, we generated five additional layers that estimate climatic control of decomposition. We parameterized decomposition coefficients according to the Yaass07 model26,42, using the following equation: $K = \exp(0.095T − 0.00014 \times T^2) \times (1 − \exp(−1.21 \times P))$, in which $P$ and $T$ are precipitation and mean temperature (either quarterly or annually) of a grid cell, and the constants 0.095, 0.00014 and −1.21 are parameters that were fit using a previous global study of leaf litter mass loss20. Although local decomposition rates can vary considerably based on litter quality or microbial community composition13, climate is the primary control at the global scale40. Decomposition coefficients describe how fast different chemical pools of leaf material are broken down over time; each parameter represents some aspect of leaf chemistry. Decomposition coefficients ($K$) with values of 0.5 and 2 indicate a halving and doubling of decomposition rates, respectively, relative to $\alpha$ (Supplementary Information, Supplementary Fig. 5).
We implemented the random-forest algorithm using the ‘randomForest’ package in R. Random-forest models average over multiple regression trees, each of which uses a random subset of all the model variables to predict a response. We first determined the influence and relationship of all 75 predictor layers on forest symbiotic state, and then optimized our models using a stepwise reduction in variables from least to most important. Variable importance was measured in two ways: increase in node purity and percentage increase in MSE (with values reported in Fig. 2). The increase in node purity of variable $x$ considers the decrease in the residual sum of squares that results from splitting regression trees using variable $x$. The percentage increase in MSE quantifies the increase in model error as a result of randomly shuffling the order of values in the vector $x$. We chose to rank variables according to the increase in node purity because we found that higher increases in node purities were associated with larger effect sizes, whereas larger percentage increases in MSE were associated with more-linear responses with smaller effect sizes. Whereas our inspection of partial feature contributions is derived from univariate random-forest models, we additionally ran multivariate random forests that predict the proportional abundance of ectomycorrhizal, arbuscular mycorrhizal and N-fixer trees for each pixel. The multivariate models were run using 50 regression trees each, with the unique set of the best 4 predictor variables for each symbiotic guild in the univariate models (Fig. 2, Supplementary Table 7).

Despite strong negative correlations between the proportions of ectomycorrhizal and arbuscular mycorrhizal basal area (Supplementary Fig. 22), the results from multivariate and univariate random forests are strongly correlated with one another (Supplementary Fig. 23).

Using model selection based on eliminating variables with a low increase in node purity and most soil nutrient, vegetative and topographic variables from our models (Supplemental Figs. 6, 7). Our final models include the remaining 34 predictor layers with climate, decomposition and some soil physical and chemical information (Supplementary Fig. 8). To determine the parsimony of our models, we compared the coefficient of determination in models run with a stepwise reduction in the number of variables (starting with those with the lowest increase in node purity). Based on performance of the ratio of coefficient of determination in models with 4 versus 34 variables, we determined that the 4 most-important variables accounted for $>85\%$ of the explained variability (Supplementary Fig. 9). We also compared model performance visually with plots of actual versus predicted proportions of each tree symbiotic guild among continents and geographical subregions (Supplementary Fig. 10). We used the ‘forestFloor’ package in R to plot the partial variable response of tree symbiotic guilds to each predictor variable (Fig. 2a–c, see Supplementary Figs. 19–21 for partial plots of the partial feature contributions of all 34 variables).

To test the sensitivity of model performance and predictions, we performed cross-validation in R using the ‘rcvUtilities’ package. $K$-fold cross-validation tests the sensitivity of model predictions to losing random subsets from the training data, and we also used 10-fold cross-validation. Using 50 regression trees each, we ran 99 iterations that withheld 10% of the model training data. We assessed the decrease in model performance in the 99 iterations by manually calculating the coefficient of determination, which uses the following formula: $1 - \frac{\sum_i (\text{actual percentage basal area} - \text{predicted percentage basal area})^2}{\sum_i (\text{actual percentage basal area} - \text{mean actual percentage basal area})^2}$. For all symbiotic guilds, withholding 10% of the training data resulted in a mean loss in variance explained of less than 1% (Supplementary Fig. 11). This shows that our training data have sufficient redundancy to ensure that our model conclusions are robust. Similarly, to determine whether our random-forest models would make similar predictions if data were equally distributed among continents, we rarefied our aggregated grid of symbiotic states and predictor layers to an even depth. Specifically, we sub-sampled all continents—North America (including Central America and the Caribbean), South America, Europe, Asia and Oceania—to match the number of grid pixels from Africa ($n = 50$). This is a much more aggressive reduction of training data than is typically used in $K$-fold cross-validations, as it involves dropping ~90% of the training data rather than retaining the same amount. We performed 99 iterations of rarefaction for each of the three symbiotic guilds. On average, models run with the rarefied data explained about 10% less variance over the full training data (the total proportion of tree basal area in each guild are highly correlated throughout the training data (Supplementary Fig. 4)). The figures cited in the main text for each guild were calculated using model projections across all pixels, even those that did not meet the criteria for model projection because they fell outside the multivariate distribution of the predictor layers or had insufficient stem density. However, our estimates for the global percentage of trees occupied by each tree symbiotic guild change by <1% when using only those pixels that met our criteria for model projection.

In the main text, we state that sharp transitions between dominant symbiotic states with climate variables could lead to declines in ectomycorrhizal trees, particularly in the southern range limit of the northern boreal forests. To determine this, we projected our random-forest models for each symbiotic guild using climate-change projections over our 19 bioclimatic variables (Supplementary Table 7), including the decomposition coefficients that use temperature and precipitation. Specifically, we considered the 2070 scenario with a relative concentration pathway of 8.5 W m$^{-2}$, which predicts an increase of greenhouse gas emissions throughout the twenty-first century.

We plot the difference in the proportion of forest basal area between the projections for 2070 and projections that use current climate data (Supplementary Table 7, Supplementary Fig. 24). We qualify this prediction with the note that vegetative changes to forests are constrained by rates of mortality, recruitment and growth.

After training and cross-validating our models with GFBi data exclusively, we additionally tested whether our models accurately predicted the previously published symbiotic state of Eurasian forests. We assigned symbiotic status to all of the trees in this previous publication, and aggregated plot-level data to a 1°-by-1° grid using the same methods as with the GFBi dataset (Supplementary Fig. 25). We found that—on average—our models predicted the symbiotic state in the regional dataset within 13.6% of the value of this previously published data set (Supplementary Fig. 26). For projected maps in Fig. 4a–c, we included the previously published data with the GFBi training data to increase geographical coverage throughout Eurasia.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
Information regarding symbiotic guild assignments, model selection (including global rasters of our model projections for ectomycorrhizal, arbuscular mycorrhizal and N-fixer tree basal area) and analyses is available as Supplementary Data. The GFBi database is available upon written request at https://www.gfbinitiative.org/dataset. Any other relevant data are available from the corresponding authors upon reasonable request.

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

☑ Confirmed

☐ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

☐ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

☐ The statistical test(s) used AND whether they are one- or two-sided

☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.

☐ A description of all covariates tested

☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

☐ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

☐ For null hypothesis testing, the test statistic (e.g. \( F \), \( t \), \( r \)) with confidence intervals, effect sizes, degrees of freedom and \( P \) value noted

Give \( P \) values as exact values whenever suitable.

☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

☐ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

☐ Estimates of effect sizes (e.g. Cohen’s \( d \), Pearson’s \( r \)), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Data were derived from the publicly available Global Forest Biodiversity Initiative (GFBi)

Data analysis

All analyses were performed in R Studio (version 1.0.136), using the packages “raster”, “randomForest”, “forestFloor”, “rgdal”, “rgeos”, and “hypervolume”, “rUtilities”, and “taxize” (using the Tree genera were assigned to a plant family using a plant taxonomy lookup table generated by Will Cornwell (hosted on Github https://github.com/traitecoevo/taxonlookup), which uses the accepted taxonomy from “The Plant List.”) Raster images were exported from the Panoply (version 4.10.3). Multipanel figures were assembled in Inkscape (version 0.92.4).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The GFBi database is available upon written request at https://www.gfbinitiative.org/datarequest. Additionally, the symbiotic state assigned to tree species as a supplementary file, as are global rasters of our model projections for EM, AM, and N-fixer proportion of tree basal area.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

**Study description**

11 tree individuals from >1.1 million forest inventory plots were assigned to symbiotic state using published data-bases of plant taxonomy vs. root-symbioses. Plots were aggregated to a 1 by 1 degree grid along with a total of 75 climatic, soil, topographic, and vegetative predictor layers. The random forest algorithm was used to determine the importance and influence of individual variables. We simplified our models by removing variables with low inc node purity, a measurement of variable of importance. We then present and interpret the environmental determinants of symbiotic state.

**Research sample**

The GFBi database consists of individual-based data that we compiled from all the regional and national GFBi forest inventory data sets. The standardized GFBi data frame, i.e. tree list, comprises tree ID, a unique number assigned to each individual tree; plot ID, a unique string assigned to each plot; plot coordinates, in decimal degrees of WGS84 datum; tree size, in diameter-at-breast-height; trees-per-hectare expansion factor; year of measurement; data set name, a unique number assigned to each forest inventory data set; and binomial scientific tree species names.

**Sampling strategy**

Plot-level data was aggregated to a 1 by 1 degree (lat / long) grid.

**Data collection**

GFBi plots cover a significant portion of the global forest extent, including some of the most unique forest conditions: (a) the northernmost (73°N, Central Siberia, Russia), (b) southernmost (52°S, Patagonia, Argentina), (c) coldest (-17°C annual mean temperature, Oimyakon, Russia), (d) warmest (28°C annual mean temperature, Palau, USA) plots, and (e) most diverse (405 tree species on the 1-ha plot, Bahia, Brazil). Plots in war-torn regions were assigned fuzzed coordinates to protect the identity of the plots and collaborators.

**Data exclusions**

N/A

**Reproducibility**

N/A

**Randomization**

N/A

**Blinding**

N/A

Did the study involve field work?  Yes  No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

**Materials & experimental systems**

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Antibodies</td>
</tr>
<tr>
<td>☐</td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td>☒</td>
<td>Palaeontology</td>
</tr>
<tr>
<td>☐</td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td>☐</td>
<td>Human research participants</td>
</tr>
<tr>
<td>☒</td>
<td>Clinical data</td>
</tr>
</tbody>
</table>

**Methods**

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>ChIP-seq</td>
</tr>
<tr>
<td>☒</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>☐</td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>