Hans Pretzsch

Forest Dynamics, Growth and Yield

From Measurement to Model

Springer
Preface

How do tree crowns, trees or entire forest stands respond to thinning in the long term? What effect do tree species mixture and multi-layering have on the productivity and stability of trees, stands or forest enterprises? How do tree and stand growth respond to stress due to climate change or air pollution? Furthermore, in the event that one has acquired knowledge about the effects of thinning, mixture and stress, how can one make this knowledge applicable to decision making in forestry practice? The experimental designs, analytical methods, general relationships and models for answering questions of this kind are the focal point of this book.

Forest ecosystems can be analysed at very different spatial and temporal levels. This book focuses on a very specific range in scale within which to analyse forest ecosystems, which extends spatially from the plant organ level through to the stand level, and temporally from days or months to the life-time of a forest stand, spanning decades or possibly even centuries. It is this range in scale addressed in the book that gives it its special profile. General rules, relationships and models of tree, and stand growth are introduced at these levels. Whereas plant biology and ecophysiology operate at a higher resolution, forest management and landscape ecology operate at a broader spatial-temporal resolution. The approach to forest dynamics, growth and yield adopted in this book lies in between; it integrates knowledge from these disciplines and, therefore, can contribute to a cross-scale, holistic systems understanding.

The scales selected have practical relevance, as they are identical to those of biological observation and the environment in which people live. As interesting as fragmented details at small temporal or spatial scales obtained through reductionist approaches might be, system management requires rather an integrated, holistic view of the system in question. In this book I outline some ways to draw information of practical relevance from the scientific knowledge acquired.

Why a new book about structural dynamics, growth and yield in central European forests, why this effort when, in any event, very little is read today? The well-known works from Assmann (1970), Kramer (1988) and Mitscherlich (1970) focus on even-aged pure stands, classic silvicultural thinning methods and wood yield at the stand level. However, over time, the structure, dynamics and tending regimes in, and demands on, the forest in central Europe have changed immensely as evident in the
transition from largely even-aged pure stands to structurally diverse mixed stands, from homogenizing thinning regimes to the targeted promotion of individual trees or groups of trees in the stand, from wood production forestry to multipurpose forestry, which is concerned with a broad range of ecological, economic and social functions and services of forest. In short, the forest structure, management activities, and the anticipated effects on the forest in general and forest production in particular have become more complex in the sense that, in a forest ecosystem today, essentially more elements need to be investigated, more relationships among these elements understood, and these need to be taken into account in forest management. In response to this tendency towards increasing complexity, new investigation concepts, analytical methods and model approaches have been developed over the years. They complete the transition from stand-oriented approaches to individual tree approaches, from position independent to functional-structural concepts, from descriptive approaches focussed mainly on the volume growth and yield to interdisciplinary model-oriented ones. As yet these approaches have not been summarised in a textbook.

Given the structures dealt with, which range from plant organs through to the tree, stand and enterprise level, and the processes analysed in a time frame of days or months through to decades or even centuries, this book is directed at all readers interested in trees, forest stands and forest ecosystems. This book has been written especially for readers who are seeking in depth information about individual-based functional-structural approaches for recording, analysing and modelling forest systems. It integrates and imparts essential forest system knowledge to all green-minded natural scientists. The work is compiled for students, scientists, lecturers, forest planners, forest managers, forest experts and consultants.

The book summarises the author’s lectures and scientific work between 1994 and 2008 while at the Ludwig Maximilian University, Munich, the Technische Universität München, and at Universities in the Czech Republic, Canada and South Africa. The contents represent the lecture material, the scientific approach and a compilation of the current methods used at the Chair for Forest Growth Science at the Technische Universität München, Germany. This book is dedicated to all students, researchers and colleagues at my Chair who have contributed to the realisation of this book.

For their support in editing specific subject areas, I would like to thank my colleagues Peter Biber (Chap. 8), Rüdiger Grote (Chap. 11), Thomas Rötzer (Chap. 2) and Stefan Seifert (Chap. 11). I also thank Gerhard Schütze and Martin Nickel for their unerring support of the research analysis, Marga Schmid for editing the bibliographical references and Ulrich Kern and Leonhard Steinacker for the cover design. Helen Desmond and Tobias Mette accomplished the overwhelming task of translating and editing the text, Charlotte Pretzsch the compilation of the index, and Ulrich Kern the equally extensive task of preparing the graphic illustrations. I thank you all for the affable and effective collaboration. The willingness to take on the considerable additional workload was founded on the common commitment to all things pertaining to the forest, and it is for all things pertaining to the forest, that is for a better understanding of, and a higher regard for the forest, that this book aims to make a contribution.
Finally, I also extend my thanks to the editors at Springer Publishing, Ursula Gramm and Christine Eckey, for their constructive contribution, and reliable and congenial assistance.

Weihenstephan

September 2008

Hans Pretzsch
Contents

1 Forest Dynamics, Growth, and Yield: A Review, Analysis of the Present State, and Perspective ... 1
 1.1 System Characteristics of Trees and Forest Stands 1
 1.1.1 Differences in the Temporal and Spatial Scale Between Trees and Humans ... 2
 1.1.2 Forest Stands are Open Systems 6
 1.1.3 Forests are Strongly Structurally Determined Systems ... 8
 1.1.4 Trees, Forest Stands, and Forest Ecosystems are Shaped by History ... 11
 1.1.5 Forests are Equipped with and Regulated by Closed Feedback Loops ... 12
 1.1.6 Forest Ecosystems are Organised Hierarchically 14
 1.1.7 Forest Stands are Systems with Multiple Output Variables ... 20
 1.2 From Forest Stand to Gene Level: The Ongoing Spatial and Temporal Refinement in Analysis and Modelling of Tree and Forest Stand Dynamics ... 21
 1.2.1 Experiments, Inventories, and Measurement of Structures and Rates ... 22
 1.2.2 From Proxy Variables to “Primary” Factors for Explanations and Estimations of Stand and Tree Growth 24
 1.2.3 From Early Experience Tables to Ecophysiological Based Computer Models ... 26
 1.3 Bridging the Widening Gap Between Scientific Evidence and Practical Relevance ... 29
 1.3.1 Scale Overlapping Experiments 29
 1.3.2 Interdisciplinary Links Through Indicator Variables ... 31
 1.3.3 Link Between Experiments, Inventories, and Monitoring by Classification Variables 32
1.3.4 Model Development ... 33
1.3.5 Link Between Models and Inventories: From Deductive to Inductive Approaches ... 35
Summary .. 37

2 From Primary Production to Growth and Harvestable Yield and Vice Versa: Specific Definitions and the Link Between Two Branches of Forest Science ... 41
2.1 Link Between Forest Growth and Yield Science and Production Ecology ... 41
2.2 General Definitions and Quantities: Primary Production, Growth and Yield ... 42
2.2.1 Gross and Net Primary Production 44
2.2.2 Gross and Net Growth ... 46
2.2.3 Gross and Net Yield ... 47
2.3 Specific Terminology and Quantities in Forest Growth and Yield Science ... 48
2.3.1 Growth and Yield of Individual Trees 50
2.3.2 Growth and Yield at the Stand Level 56
2.4 Stem and Merchantable Volume Growth as a Percentage of Gross Primary Production ... 64
2.4.1 From Standing Volume or Stem or Merchantable Wood Volume to Total Biomass ... 66
2.4.2 Ephemeral Turnover Factor \(t_{\text{org}} \) for Estimation of NPP 72
2.4.3 Deriving Harvested Volume Under Bark from Standing Volume over Bark ... 76
2.4.4 Conversion of Merchantable Wood Volume to GPP 78
2.5 Dead Inner Xylem ... 81
2.6 Growth and Yield and Nutrient Content 84
2.6.1 From Total Biomass to the Carbon Pool 85
2.6.2 Nutrient Minerals ... 85
2.7 Efficiency of Energy, Nitrogen, and Water Use 89
2.7.1 Energy Use Efficiency (EUE) 90
2.7.2 Nitrogen Use Efficiency (NUE) 93
2.7.3 Water Use Efficiency (WUE) 94
Summary .. 95

3 Brief History and Profile of Long-Term Growth and Yield Research ... 101
3.1 From Rules of Thumb to Sound Knowledge 101
3.2 Foundation and Development of Experimental Forestry 104
3.3 From the Association of German Forest Research Stations to the International Union of Forest Research Organizations (IUFRO) ... 105
3.4 Growth and Yield Science Section of the German Union of Forest Research Organisations 105
3.5 Continuity in Management of Long-Term Experiment Plots in Bavaria as a Model of Success .. 107
3.6 Scientific and Practical Experiments .. 110
3.7 Establishment and Survey of Long-Term Experimental Plots 112
 3.7.1 Establishment of Experimental Plots and Trial Plots 112
 3.7.2 Measuring Standing and Lying Trees 115
Summary ... 118

4 Planning Forest Growth and Yield Experiments 121
 4.1 Key Terminology in the Design of Long-Term Experiments 121
 4.2 The Experimental Question and its Four Component Questions 123
 4.2.1 Which Question Should Be Answered? 123
 4.2.2 With What Level of Accuracy Should the Question be Answered? ... 124
 4.2.3 What Level of Spatial–Temporal Resolution is Wanted in the Explanation? ... 124
 4.2.4 Why and for What Purpose Should the Question be Answered? ... 124
 4.3 Biological Variability and Replicates 125
 4.3.1 Total Population and Sample .. 125
 4.4 Size of Experimental Plot and Trial Plot Number 126
 4.5 Block Formation and Randomisation: Elimination of Systematic Error ... 128
 4.6 Classical Experimental Designs ... 129
 4.6.1 One-Factor Designs ... 130
 4.6.2 Two-Factor or Multifactor Analysis 133
 4.6.3 Split-Plot and Split-Block Designs 137
 4.6.4 Trial Series and Disjunct Experimental Plots 139
 4.7 Special Experimental Designs and Forest Growth Surveys 141
 4.7.1 From Stand to Individual Tree Experiments 141
 4.7.2 Experiments and Surveys of Growth Disturbances 144
 4.7.3 Artificial Time Series or Growth Series 145
Summary ... 148

5 Description and Quantification of Silvicultural Prescriptions 151
 5.1 Kind of Thinning .. 154
 5.1.1 Thinning According to Social Tree Classes by Kraft (1884) ... 154
 5.1.2 Thinning According to Combined Tree and Stem Quality Classes from the Association of German Forest Research Stations (1902) ... 156
 5.1.3 Thinning After the Selection of Superior or Final Crop Trees ... 160
 5.1.4 Thinning Based on Diameter Class or Target Diameter 164
 5.2 Severity of Thinning .. 166
 5.2.1 Thinning Based on a Target Stand Density Curve 167
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Descriptions of Stand Structure</td>
<td>229</td>
</tr>
<tr>
<td>7.2.1 Tree Distribution Maps and Crown Maps</td>
<td>230</td>
</tr>
<tr>
<td>7.2.2 Three-Dimensional Visualisation of Forest Growth</td>
<td>234</td>
</tr>
<tr>
<td>7.2.3 Spatial Occupancy Patterns</td>
<td>239</td>
</tr>
<tr>
<td>7.3 Horizontal Tree Distribution Patterns</td>
<td>242</td>
</tr>
<tr>
<td>7.3.1 Poisson Distribution as a Reference for Analysing Stand Structures</td>
<td>243</td>
</tr>
<tr>
<td>7.3.2 Position-Dependent Distribution Indices</td>
<td>246</td>
</tr>
<tr>
<td>7.3.3 Distribution Indices Based on Sample Quadrats</td>
<td>252</td>
</tr>
<tr>
<td>7.3.4 K-Function</td>
<td>256</td>
</tr>
<tr>
<td>7.3.5 L-Function</td>
<td>260</td>
</tr>
<tr>
<td>7.3.6 Pair Correlation Functions for Detailed Analysis of Tree Distribution Patterns</td>
<td>261</td>
</tr>
<tr>
<td>7.4 Stand Density</td>
<td>266</td>
</tr>
<tr>
<td>7.4.1 Stocking Density</td>
<td>266</td>
</tr>
<tr>
<td>7.4.2 Percentage Canopy Cover (PCC)</td>
<td>267</td>
</tr>
<tr>
<td>7.4.3 Mean Basal Area, mBA, by Assmann (1970)</td>
<td>269</td>
</tr>
<tr>
<td>7.4.4 Quantifying Stand Density from the Allometry</td>
<td>....</td>
</tr>
<tr>
<td>7.4.5 Crown Competition Factor CCF</td>
<td>273</td>
</tr>
<tr>
<td>7.4.6 Density of Spatial Occupancy and Vertical Profiles</td>
<td>274</td>
</tr>
<tr>
<td>7.5 Differentiation</td>
<td>276</td>
</tr>
<tr>
<td>7.5.1 Coefficient of Variation of Tree Diameters and Heights</td>
<td>276</td>
</tr>
<tr>
<td>7.5.2 Diameter Differentiation by Füldner (1995)</td>
<td>276</td>
</tr>
<tr>
<td>7.5.3 Species Richness, Species Diversity, and Structural Diversity</td>
<td>279</td>
</tr>
<tr>
<td>7.6 Species Intermingling</td>
<td>284</td>
</tr>
<tr>
<td>7.6.1 Species Intermingling Index by Füldner (1996)</td>
<td>284</td>
</tr>
<tr>
<td>7.6.2 Index of Segregation from Pielou (1977)</td>
<td>285</td>
</tr>
<tr>
<td>Summary</td>
<td>287</td>
</tr>
<tr>
<td>8 Growing Space and Competitive Situation of Individual Trees</td>
<td>291</td>
</tr>
<tr>
<td>8.1 The Stand as a Mosaic of Individual Trees</td>
<td>292</td>
</tr>
<tr>
<td>8.2 Position-Dependent Competition Indices</td>
<td>292</td>
</tr>
<tr>
<td>8.2.1 Example of Competitor Identification and Competition Calculation</td>
<td>293</td>
</tr>
<tr>
<td>8.2.2 Methods of Competitor Identification</td>
<td>295</td>
</tr>
<tr>
<td>8.2.3 Quantifying the Level of Competition</td>
<td>299</td>
</tr>
<tr>
<td>8.2.4 Evaluation of Methods</td>
<td>302</td>
</tr>
<tr>
<td>8.3 Position-Independent Competition Measures</td>
<td>305</td>
</tr>
<tr>
<td>8.3.1 Crown Competition Factor</td>
<td>305</td>
</tr>
<tr>
<td>8.3.2 Horizontal Cross-Section Methods</td>
<td>306</td>
</tr>
<tr>
<td>8.3.3 Percentile of the Basal Area Frequency Distribution</td>
<td>307</td>
</tr>
<tr>
<td>8.3.4 Comparing Position-Independent with Position-Dependent Competition Indices</td>
<td>308</td>
</tr>
</tbody>
</table>
8.4 Methods Based on Growing Area .. 311
 8.4.1 Circle Segment Method ... 311
 8.4.2 Rastering the Stand Area .. 312
 8.4.3 Growing Area Polygons .. 313
8.5 Detailed Analysis of a Tree’s Spatial Growth Constellation 315
 8.5.1 Spatial Rastering and Dot Counting 315
 8.5.2 Calculation of Spatial Distances 318
 8.5.3 Crown Growth Responses to Lateral Restriction 320
8.6 Hemispherical Images for Quantifying the Competitive Situation
 of Individual Trees .. 321
 8.6.1 Fish-Eye Images as a Basis for Spatial Analyses 321
 8.6.2 Methodological Principles of Fish-Eye Projection
 in Forest Stands .. 323
 8.6.3 Quantifying the Competitive Situation of Individual
 Trees in a Norway Spruce–European Beech Mixed Stand 325
8.7 Edge Correction Methods .. 326
 8.7.1 Edge Effects and Edge Correction Methods 326
 8.7.2 Reflection and Shift ... 327
 8.7.3 Linear Expansion ... 328
 8.7.4 Structure Generation ... 332
 8.7.5 Evaluation of Edge Correction Methods 333
Summary .. 334

9 Effects of Species Mixture on Tree and Stand Growth 337
 9.1 Introduction: Increasing Productivity with Species Mixtures? 337
 9.1.1 Fundamental Niche and Niche Differentiation 338
 9.1.2 Maximizing Fitness isn’t Equivalent to Maximizing
 Productivity ... 340
 9.1.3 The Balance Between Production Promoting
 and Inhibiting Effects is Important 341
 9.2 Framework for Analysing Mixing Effects 343
 9.2.1 Ecological Niche .. 343
 9.2.2 Site–Growth Relationships ... 344
 9.2.3 Risk Distribution .. 344
 9.2.4 Comparison of Mixed Stands with Neighbouring Pure
 Stands: Methodological Considerations 348
 9.3 Quantifying Effects of Species Mixture at Stand Level 351
 9.3.1 Cross-Species Diagrams for Visualising Mixture Effects 351
 9.3.2 Nomenclature, Relations and Variables for Analysing
 Mixture Effects ... 352
 9.3.3 Mixture Proportion ... 354
 9.3.4 Examining Effects of Species Mixture on Biomass
 Productivity in Norway Spruce–European Beech Stands:
 An Example ... 356
 9.3.5 Examining Mean Tree Size in Norway Spruce–European
 Beech Stands: An Example .. 360
9.4 Quantifying Mixture Effects at the Individual Tree Level363
 9.4.1 Efficiency Parameters for Individual Tree Growth363
 9.4.2 Application of Efficiency Parameters for Detecting
 Mixture Effects ..365
9.5 Productivity in Mixed Forest Stands371
 9.5.1 The Mixed Stands Issue: A Central European Review
 and Perspective ..371
 9.5.2 Benchmarks for Productivity of Mixed Stands Compared to Pure Stands372
 9.5.3 Spatial and Temporal Niche Differentiation as a Recipe
 for Coexistence and Cause of Surplus Productivity375
 9.5.4 Crown Shyness ..376
 9.5.5 Growth Resilience with Structural and Species
 Diversity ...377
Summary ..378

10 Growth Relationships and their Biometric Formulation381
 10.1 Dependence of Growth on Environmental Conditions
 and Resource Availability381
 10.1.1 Unimodal Dose–Effect-Curve381
 10.1.2 Dose–Effect-Rule by Mitscherlich (1948)383
 10.1.3 Combining the Effects of Several Growth Factors386
10.2 Allometry at the Individual Plant Level387
 10.2.1 Allometry and Its Biometric Formulation387
 10.2.2 Examples of Allometry at the Individual Plant Level389
 10.2.3 Detection of Periodic Changes in Allometry391
10.3 Growth and Yield Functions of Individual Plants393
 10.3.1 Physiological Reasoning and Biometrical Formulation
 of Growth Functions393
 10.3.2 Overview Over Approved Growth and Yield Functions ...394
 10.3.3 Relationship Between Growth and Yield397
10.4 Allometry at the Stand Level: The Self-Thinning Rules
 from Reineke (1933) and Yoda et al. (1963)399
 10.4.1 Reineke’s (1933) Self-thinning Line and Stand
 Density Index ...400
 10.4.2 –3/2-Power Rule by Yoda et al. (1963)402
 10.4.3 Link Between Individual Tree and Stand Allometry405
 10.4.4 Allometric Scaling as General Rule406
10.5 Stand Density and Growth407
 10.5.1 Assmann’s Concept of Maximum, Optimum and Critical
 Stand Density ..409
 10.5.2 Biometric Formulation of the Unimodal Optimum
 Curve of Volume Growth in Relation to Stand Density
 and Mean Tree Size411
10.6 Dealing with Biological Variability .. 415
 10.6.1 Quantifying Variability .. 416
 10.6.2 Reproduction of Variability 418
Summary ... 420

11 Forest Growth Models .. 423
 11.1 Scales of Observation, Statistical and Mechanistic Approaches
to Stand Dynamics .. 425
 11.1.1 Scales of Forest Growth and Yield Research
 and Models .. 425
 11.1.2 From the Classical Black-Box to White-Box
 Approaches .. 426
 11.1.3 Top–Down Approach vs Bottom–Up Approach 428
 11.2 Model Objectives, Degree of System Abstraction, Database 429
 11.2.1 Growth Models as Nested Hypotheses About Systems
 Behaviour ... 430
 11.2.2 Growth Models as a Decision Tool for Forest
 Management ... 430
 11.3 Growth Models Based on Stand Level Mean
and Cumulative Values ... 432
 11.3.1 Principles of Yield Table Construction 432
 11.3.2 From Experience Tables to Stand Simulators 437
 11.4 Growth Models Based on Tree Number Frequencies 445
 11.4.1 Representing Stand Development by Systems
 of Differential Equations 445
 11.4.2 Growth Models Based on Progressing Distributions 446
 11.4.3 Stand Evolution Models – Stand Growth
 as a Stochastic Process 449
 11.5 Individual Tree Growth and Yield Models 450
 11.5.1 Overview of the Underlying Principles of Individual-
 Tree Models .. 451
 11.5.2 Growth Functions as the Core Element of Individual-
 Tree Models .. 453
 11.5.3 Overview of Model Types 455
 11.6 Gap and Hybrid Models ... 456
 11.6.1 Development Cycle in Gaps 457
 11.6.2 JABOWA – Prototype Model from Botkin et al. (1972) 458
 11.7 Matter Balance Models .. 462
 11.7.1 Increasing Structural and Functional Accordance
 of Models with Reality 462
 11.7.2 Modelling of the Basic Processes in Matter
 Balance Models .. 465
 11.7.3 Overview of Matter Balance Model Approaches 476
 11.8 Landscape Models .. 478
 11.8.1 Application of Landscape Model LandClim 481
Contents

11.9 Visualisation of Forest Stands and Wooded Landscapes 482
11.9.1 Visualisation Tools TREEVIEW and L-VIS 484
11.10 Perspective ... 488
Summary .. 490

12 Evaluation and Standard Description of Growth Models 493
12.1 Approaches for Evaluation of Growth Models and Simulators ... 494
 12.1.1 Suitability for a Given Purpose 494
 12.1.2 Validation of the Biometric Model 496
 12.1.3 Suitability of the Software 499
 12.1.4 Customising Models and Simulators for End-Users ... 500
12.2 Examples of Model Validation 503
 12.2.1 Validation on the Basis of Long-Term Sample Plots
 and Inventory Data 503
 12.2.2 Comparison with Growth Relationships 508
 12.2.3 Comparison with Knowledge from Experience 510
12.3 Standards for Describing Models and Simulators 510
Summary .. 512

13 Application of Forest Simulation Models for Decision Support
in Practice .. 515
13.1 Model Objective and Prediction Algorithm 516
 13.1.1 Model Objective 516
 13.1.2 Prediction Algorithm 516
 13.1.3 Database .. 519
13.2 Site–Growth Model .. 519
 13.2.1 The Principles of Controlling Individual Tree Growth
 by Means of Site Factors 520
 13.2.2 Modelling the Potential Age–Height Curve
 in Dependence on Site Conditions 520
13.3 Generation of Initial Values for Simulation Runs 525
 13.3.1 Stand Structure Generator STRUGEN 526
13.4 Spatially Explicit Modelling of the Growth Arrangement
of the Individual Trees 528
 13.4.1 Index KKL as the Indicator of the Crown Competition
 13.4.2 Index NDIST as the Indicator for Competition Asymmetry
 in the Neighbourhood of Individual Trees 528
 13.4.3 Index KMA for the Species Mixture
13.5 Application for Scenario Analysis at the Stand Level:
A Pure Norway Spruce Stand vs a Norway Spruce – European
Beech Mixed Stand ... 530
 13.5.1 Growth and Yield at the Stand Level 530
 13.5.2 Growth and Yield on Tree Level 532
 13.5.3 Modelling Structural Diversity 532
 13.5.4 Multi-Criteria Considerations 534
13.6 Growth Models for Dynamic Enterprise Planning535
 13.6.1 Simulation at the Enterprise Level for Long-Term Strategic Planning536
 13.6.2 Application of Models for Decision Support537
 13.6.3 Application of the Munich Forestry Enterprise Forest Management Plan540
13.7 Estimation of Growth and Yield Responses to Climate Change ...543
 13.7.1 Dependence of Response Patterns on Site
 and Tree Species ..544
 13.7.2 Sensitivity Analysis at the Regional Level545
 13.7.3 Development of Silvicultural Measures for Mitigation
 and Adaptation to Climate Change548
Summary ...549

14 Diagnosis of Growth Disturbances ..553
 14.1 Growth Models as Reference ..556
 14.1.1 Comparison with Yield Table556
 14.1.2 Dynamic Growth Models as Reference557
 14.1.3 Synthetic Reference Curves559
 14.2 Undisturbed Trees or Stands as a Reference560
 14.2.1 Increment Trend Method560
 14.2.2 Pair-Wise Comparison565
 14.2.3 Reference Plot Comparison566
 14.2.4 Reference Plot Comparison by Indexing570
 14.2.5 Regression–Analytical Estimation of Increment Decrease572
 14.3 Growth Behaviour in Other Calendar Periods as Reference ...576
 14.3.1 Individual Growth in Previous Period as Reference ...576
 14.3.2 Long-Term, Age-Specific Tree Growth as Reference
 (Constant Age Method) ..579
 14.3.3 Growth Comparison of Previous and Subsequent
 Generation at the Same Site580
 14.3.4 Diagnosis of Growth Trends from Succeeding
 Inventories ..582
 14.4 Dendro-Chronological Time Series Analysis585
 14.4.1 Elimination of the Smooth Component586
 14.4.2 Indexing ..587
 14.4.3 Response Function ...588
 14.4.4 Quantification of Increment Losses589
Summary ...590

15 Pathways to System Understanding and Management593
 15.1 Overview of Knowledge Pathways in Forest Growth
 and Yield Research ..594
 15.1.1 Observation, Measurement, and Collection of Data ..595
 15.1.2 Description ..597
15.1.3 Formulation of Hypotheses for Elements of Individual System Elements 597
15.1.4 Test of Hypotheses ... 599
15.1.5 Models as a Chain of Hypotheses 602
15.1.6 Test of Model Hypothesis by Simulation 603
15.1.7 Application of the Model in Research, Practice, and Education ... 604
15.1.8 Relationships, Rules, Laws, and Theories 604

15.2 Transfer of Knowledge from Science to Practice 611

15.2.1 Concept of Forest Ecosystem Management 611
15.2.2 Long-Term Experiments and Models for Decision Support ... 613

Summary ... 615

References .. 619

Index .. 655
Chapter 1
Forest Dynamics, Growth, and Yield: A Review, Analysis of the Present State, and Perspective

The study of forest dynamics is concerned with the changes in forest structure and composition over time, including its behaviour in response to anthropogenic and natural disturbances. Growth is defined as the biomass (or size) a plant or a stand produces within a defined period (e.g. 1 day, 1 year, 5 years). Yield is the accumulated biomass from the time of stand establishment. Tree growth and disturbances influence and are primary evidence of forest dynamics. They are determined by resources (e.g. radiation, water, nutrients supply) and environmental conditions (e.g. temperature, soil acidity, or air pollution). The first chapter introduces the special characteristics of the forest system. These characteristics are investigated in the study of forest dynamics, of growth and yield science, and of how biological rules are traced systematically and made accessible as practical knowledge. In the course of this chapter, we learn about the past, current, and future challenges to the science of forest growth and yield.

1.1 System Characteristics of Trees and Forest Stands

A system is defined by the system elements that it comprises, the relationships between these elements, and the general rules of the system. The system rules are effective only at the entire system level and not at the individual or subsystem element levels. The functions of the system that are recognized and emphasised depend on the investigator or user’s perspective (von Bertalanffy 1951, 1968; Wuketits 1981). The same is true for the system boundaries, which are defined according to specific purposes and seldom correspond to actual natural system boundaries. For instance, in a forest stand, we can distinguish the system elements soil, soil vegetation and trees with roots, stems, branches and needles and/or leaves. The interactions among the system elements create a characteristic system structure, e.g. the shading of the trees determines the light conditions for the understory trees and the soil vegetation.
In general, except for some wearing out, systems that function independent of time (e.g. a chair, a piano) are termed static systems. In dynamic systems (e.g. forest stands, animal populations, scientific working team), the chain of events is time dependent. Past system events decisively influence its future behaviour. Since the specific system characteristics of forest stands ultimately determine the approach and methodology of forest growth and yield research, they are presented below.

1.1.1 Differences in the Temporal and Spatial Scale Between Trees and Humans

One fundamental characteristic of trees and forest stands that has important consequences for their analysis, representation, and modelling is their longevity. The following expresses the life span of various organisms on a power-of-10 scale:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Life Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>10^4 years</td>
</tr>
<tr>
<td>Humans</td>
<td>10^2 years</td>
</tr>
<tr>
<td>Large mammals</td>
<td>10^1 years</td>
</tr>
<tr>
<td>Grasses, herbs</td>
<td>10^0 years</td>
</tr>
<tr>
<td>Insects</td>
<td>10^{-1} years</td>
</tr>
<tr>
<td>Bacteria</td>
<td>10^{-2} years</td>
</tr>
</tbody>
</table>

We see that trees and forest stands live two to six orders of magnitude longer than most animal and plant organisms, including humans. For a bacterium, a tree life is 10^9 times longer, an eternity so to speak. In comparison with the oldest trees in the world (~6,000 years), the life span of humans (~100 years) attains only about 100th, or 10^{-2}, that of trees. Consequently, whereas experiments on the growth of bacteria, insects, grain types, herbaceous plants, or mammals can be conducted in hours, days, months, or a few years, experiments on tree growth require continuity over many generations of scientists. Yet, even the oldest thinning experiments from long-term experiments in Bavaria, which date back to the 1870s and continue to be surveyed, cover only a comparably small segment of the potential life span of trees and stands.

The North American tree species Bristlecone pine (*Pinus aristata*) can reach an impressive 5,000–6,000 years of age (Fig. 1.1). Yet even when compared to central European tree species such as Silver birch, European ash, Norway spruce, or Sesile oak, the working, research, or entire life span of a human is comparably short. The entire forest science era, beginning with W. L. Pfeil (1783–1859), H. Cotta (1763–1844), and G. L. Hartig (1764–1837) in the late eighteenth century, an extraordinarily long period, only covers a fraction of the life span of our forest trees (Fig. 1.1).

The longevity of trees and forest stands requires specific approaches, from initial measurements in the field to modelling on the computer, that differ considerably from those adopted for organisms with shorter life expectancies. For example,
1.1 System Characteristics of Trees and Forest Stands

Fig. 1.1 The life span of humans and trees differ by up to two orders of magnitude. The relative size development of individual trees by age is shown for Silver birch (*Betula pendula* Roth), European ash (*Fraxinus excelsior* L.), Norway spruce (*Picea abies* (L.) Karst.), Sessile oak (*Quercus petraea* (Matuschka) Liebl.) and Bristlecone pine (*Pinus aristata* Engelm.). The time bars in the lower part of the graphic point out the superior lifetime of trees are compared to the research time and lifetime of a human, and the entire history of (modern) forest science since its foundation through W. L. Pfeil (1783–1859), H. Cotta (1763–1844), and G. L. Hartig (1764–1837) in the late eighteenth century.

investigations of the effect of different thinning regimes on the growth of Norway spruce stands can only be completed after many decades or a century. This is because the long-term effects of the treatments on the growing stock in the final stand are vastly more important than the temporary responses to individual thinning operations. The growth responses after only 5–10 years are, at best, indicative only of tree or stand development over the entire life span.

In the 1860s and 1870s, Franz v. Baur (1830–1897), August v. Ganghofer (1827–1900), Karl Gayer (1822–1907), and Arthur v. Seckendorff-Gudent (1845–1886) outlined a basic approach for the establishment of long-term forestry investigations and initiated a network of widely distributed long-term experimental plots in forest stands in Bavaria. Many of the first experimental plots are being monitored still today, 130 years after their establishment. These long-term experiments are essential in forest science for the derivation of reliable knowledge about forest systems and for the provision of decision support in forestry practice (Fig. 1.2). When no experimental plots are available for observations of forest growth in the long-term (real time series), artificial time series may be established in the form of spatially adjacent stands of different ages (artificial time series). On a suitable site, monitoring plots are set up in stands of different age classes as an artificial time series (Fig. 1.3).
Index

A-value, 172
accuracy, 496, 499, 504
acid sprinkling, 144
aggregation index
 range, 250
aggregation operator, 460
allelopathy, 341
allometric exponent, 388
allometric factor, 389
allometric relationship, 185
allometry
 biometric formulation, 387
 change by ozone fumigation, 393
effect of competition, 55
example at individual plant level, 389
fractal scaling, 407
general rule, 407
geometric scaling, 405
individual level, 387
link between plant and stand level, 405
periodic changes in, 391
species-specific, 404
 on stand level, 399
analysis of tree and stand growth
 scale-overlapping, 30
artificial time series, 145, 146
Assmann’s rule of optimal basal area, 509
Assmann’s yield levels, 435
Association of German Forest Research Stations, 104
Association of International Forest Research Stations, 105
asymmetrical competition, 339
atmospheric nitrogen import, 18

bark loss
 factor, 76
basal area frequency distribution, 307
bias, 496, 497, 504
biological relationship
 determinative component, 420
 stochastic component, 420
biological variability, 415
biomass
 metabolically active, 83
 nutrient concentration, 84
 biomass equation, 71, 86
black-box approach, 426, 427
block design, 123, 129, 130, 132, 134
block formation, 128
bottom-up approach, 18, 428
brown coal power station, 145
brushwood
 factor, 68
 percentage, 68
 brushwood factor, 67
 buffer strip, 122, 126
calcium concentration, 85
calorific value, 90
canopy cover analysis, 269
carbon
 content in biomass, 85
carbon emission
 global annual, 45
carbon flow model, 464
carbon sink, 46
cause-and-effect relationship, 42
ceteris paribus conditions, 8
Clapham’s variance–mean ratio, 252, 253
Clark and Evans’ index R, 247
 edge correction factor, 248
clear-cut system, 19
client-server solution, 502
clone-growing space investigation experiment, 141
clumped mixture, 228
coefficient of variation, 276
combined tree and stem quality class, 156, 159
compensation point, 371
competition, 55, 325
effect on size growth, 55
fish-eye method, 324
competition calculation, 293
competition index, 291, 293, 294, 331, 455
circle segment method, 311
comparison, 301, 306
correlation with tree growth, 303
diameter-class model, 447
diameter differentiation, 276, 278
evaluation, 302
overview, 304
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
competitive strength, 338
competitor identification, 293, 295
angle count sampling, 298
crown overlap method, 297
circle segment method, 311
evaluation, 302
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
completely randomised design, 130
computer capacity, 423
crown efficiency, 369
diameter-class model, 447
diameter differentiation, 276, 278
development function, 449
disjunct experimental plots, 130
diameter-distribution model, 446
diameter-frequency distribution, 448, 450
diameter-frequency model, 445
diameter-height-age relationship, 189
age-diameter-height regression method, 193
growth function method for strata mean
trees, 193
method of smoothing coefficients, 191
diameter-height curve, 183
diameter-height relationship
evaluation, 302
overview, 304
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
crown competition factor, 273, 274, 305
evaluation, 302
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
crown overlap method, 297
crown projection area, 118, 229, 230, 232
crown projection map, 269
crown radius, 118
crown shape model, 234
crown space analysis, 239
evaluation, 333
crown shyness, 341
crown shyness, 341
density–growth relationship, 411, 412
diameter-class model, 447
diameter differentiation, 276, 278
evaluation, 302
overview, 304
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
crown competition factor, 273, 274, 305
evaluation, 302
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
crown overlap method, 297
crown projection area, 118, 229, 230, 232
crown projection map, 269
crown efficiency, 369
diameter-class model, 447
diameter differentiation, 276, 278
development function, 449
disjunct experimental plots, 130
diameter-distribution model, 446
diameter-frequency distribution, 448, 450
diameter-frequency model, 445
diameter-height-age relationship, 189
age-diameter-height regression method, 193
crown competition factor, 273, 274, 305
evaluation, 302
position-dependent, 292, 308
position-independent, 305, 308
stand regeneration, 295
crown overlap method, 297
crown projection area, 118, 229, 230, 232
crown projection map, 269
crown radius, 118
crown shape model, 234
crown space analysis, 239
evaluation, 333
crown shyness, 341
crown space analysis, 239
evaluation, 333
crown shyness, 341
crown space analysis, 239
evaluation, 333
reflexion, 327
shift, 327
structure generation, 332
definition, 128, 326, 327
efficiency, 90
energy use, 91
foliage nitrogen use, 93
water use, 94
efficiency in biomass investment, 364
efficiency in space exploitation, 363
efficiency of space occupation, 363, 366
Eichhorn’s rule, 435
elasticity, 13
end-user, 502
energy use efficiency, 89, 90
equation of trees, 114
Epanecnikov-kernel function, 264
evaluation, 493
model software, 499
evapotranspiration, 467, 469
even-aged stand, 61
evenness, 280
evidence, 24
expansion factor, 64, 65, 71, 79
experience table, 26, 432, 437, 439
experiential knowledge, 104
experiment, 29, 144
growth disturbance, 144
scale overlapping, 29
experimental design
individual-tree data, 147
indidual-tree level, 144
experimental factor, 122
experimental question, 121, 123
experimental treatment, 121
factor combination, 111
factor level, 134
feedback loop, 12, 14
cross-scale, 20, 426
fish-eye image, 321, 324
fish-eye photograph, 322
fish-eye projection, 323
fitness, 340, 378
growth, 378
foliage nitrogen use efficiency, 93
forest ecosystem, 11
hierarchical level, 17
hierarchical organisation, 14
longevity, 2
process category, 16
self-regulated, 12
shape by history, 11
structurally determined, 8
forest ecosystem management, 480
forest experimental stations, 104
forest function and service, 10, 20, 489
forest growth and yield, 41
link to production ecology, 41
forest growth model
dinosaurs, 477
standardised description, 510
toolbox principle, 489
forest growth modelling, 423
history, 423
perspective, 488
forest inventories, 35
forest services, 516
form factor, 183, 196
form height function, 153, 198
fumigation with ozone, 144
fundamental niche, 338, 343
future crop tree, 160
distance, 163
number, 163
future crop tree thinning, 172
A-value, 172
example, 174
threshold distance, 173
tree removal, 173
gap model, 28, 456, 457
Gauss formula, 232
applied for crown projection area, 232
Gaussian distribution, 417
generalisation, 102
German Union of Forest Research Organisations, 107
grey-box approach, 428
gross growth, 43, 46
gross photosynthesis, 470
gross primary productivity, 42, 44, 79
partitioning in respiration, turnover, losses, 80
gross yield, 47
growing area, 311, 313
growth, 50
curve, 53
individual tree, 53
relationship between growth and yield, 397
stand level, 56
true, 81
growth acceleration, 7, 411
growth function, 393, 394, 398
biometrical formulation, 393
example, 395
physiological reasoning, 393
relationship between growth and yield, 397
growth model, 33, 423
decision support tool, 430
deductive approach, 35
definition, 500
empirical database, 426
environmental changes, 428
evaluation, 494
hybrid, 34
inductive approach, 35
mechanistic, 34
objective, 429
parameterisation, 36
spatial scale, 425
stand structure, 474
statistical, 33
temporal scale, 425
growth of pure and mixed stands
reference value, 59
growth relationship, 381
growth resilience, 377
growth series, 145
growth simulator
criteria for the standardised description, 501
definition, 428, 490
evaluation, 500
standardised description, 510
growth trend, 582
harvest index, 80
harvest loss, 50
factor, 65, 76
harvested volume
under bark, 76
heartwood, 64, 81, 83
height measurement, 115
hemispherical image, 321
holism, 29
horizontal cross-section method, 306
horizontal tree distribution, 242
hybrid growth model, 28, 456, 460, 489
principle, 461
hypothesis testing, 430
increment, 50
current annual, 50
mean annual, 52, 58
periodic annual, 50
increment thinning, 153
indicator variable, 31
individual tree design, 141
individual tree growth, 450
direct estimation, 453
potential modifier method, 454
individual-tree model, 27, 450
comparison with yield table, 504
overview, 455
prediction process, 451
schematic representation, 452
individual tree trial, 142
inhibiting, 340
initial stand structure
effect of stand development, 227
insurance hypothesis, 346
intensity of thinning, 175
tree number-mean height curves as
guideline, 176
interception of water, 467
intermediate harvest, 80
intermediate thinning, 79
intermediate yield, 61, 63
International Union of Forest Research Organisations, 105
inventory, 112
inversion method, 419
Johann’s A-value, 172
Johnston’s function, 446
kernel-function, 264
K-function, 256, 258–260
element, 257
kind of thinning, 154
knowledge integration, 32
Lambert–Beer rule, 459
landscape model, 478–481
principle, 478
scenario analysis, 482
landscape-scale process, 481
landscape visualisation, 239
example, 486
flight through, 484
scenario analysis, 487
walk through, 487
lateral crown restriction, 315, 318, 319
lateral restriction, 315
crown growth response, 320
Latin rectangle, 129
Latin square, 129, 132, 133
leaf
biomass, 69
factor, 69
leaf area index, 459
L-function, 256, 260, 261
element, 257
level of competition, 299
light interception, 467
Index

limitation, 70
linear expansion, 328
litter, 69
annual fall, 69
logarithmic transformation, 184
longevity, 2
long-term experimental plot, 3, 4, 101, 108, 110
establishment, 112
growth and yield characteristics, 74
standard analysis, 181
long-term planning, 483
loss
due to debarking, 77
due to harvest, 77
maintenance respiration, 470
management model, 431
management strategy, 431
matter balance model, 461
overview, 476
mean annual increment, 399
mean basal area, 269
mean periodic annual increment
overview, 73
mechanical abrasion, 341
mechanistic model, 477
merchantable wood volume, 48, 197
conversion to gross primary productivity, 78
conversion to net primary productivity, 78
mineral nutrients, 85
accumulation in standing biomass, 87
content in forest soil, 88
content in soil, 89
distribution between tree compartments, 87
Mitscherlich’s function, 384
example, 385
mixed species stand, 337
mixed stand, 147, 337, 372
climate change, 377
comparison with pure stand, 348
crown space analysis, 276
density–growth relationship, 347
expected productivity, 358
observed productivity, 350, 358
rhythm of the increment curve, 350
risk distribution, 344
site–growth relationship, 344
mixing effect, 349, 352
analysis on individual tree level, 367
anti-cyclic seasonal growth, 376
causal explanation, 369
complementary use of resources, 376
crown projection area, 362
crown shyness, 376
crown size, 364
efficiency parameter, 364
examining mean tree size, 360
increase of crown efficiency, 368
individual tree level, 363
persistance, 350
probability of disturbance, 377
productivity, 357, 374
range of overyielding, 373
reduction in competition, 375
resource limitation, 342
tracing from stand to tree level, 370
tree size, 362
mixture proportion, 267, 353, 354, 356, 360
approach for quantification, 354, 360
basal area, 355
crown projection area, 355
species–specific growing space requirements, 359
wood density, 355
model approach, 429
definition, 430
hybrid, 95
model description, 493
additional algorithms, 511
growth model, 511
hardware, 512
input, 511
model approach, 511
model validation, 512
output, 511
parameterisation and calibration specification, 511
program control, 511
range of application, 511
software, 512
model evaluation, 493
criteria, 494, 496
model validation, 496, 499, 503
growth relationships, 508
inventory data, 506
knowledge from experience, 510
long-term experimental plot, 503
modeling stand structure, 475
monitoring, 112
Morisita’s index of dispersion, 254
mortality, 47
mortality processes, 473
motorway planning, 486
mountain forest, 10
multifactor block design, 134
multifactor design, 111
multifactor Latin square, 135
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiple factor design</td>
<td>130</td>
</tr>
<tr>
<td>interaction effect</td>
<td>134</td>
</tr>
<tr>
<td>main factor</td>
<td>133</td>
</tr>
<tr>
<td>multiple use paradigm</td>
<td>424</td>
</tr>
<tr>
<td>multiscale falsification</td>
<td>30</td>
</tr>
<tr>
<td>mutualism</td>
<td>373</td>
</tr>
<tr>
<td>natural stocking density</td>
<td>267</td>
</tr>
<tr>
<td>nearest neighbour method</td>
<td>246, 276, 286</td>
</tr>
<tr>
<td>Nelder-design</td>
<td>141</td>
</tr>
<tr>
<td>net growth of biomass</td>
<td>45</td>
</tr>
<tr>
<td>stem wood harvested</td>
<td>43</td>
</tr>
<tr>
<td>net growth of biomass</td>
<td>45</td>
</tr>
<tr>
<td>net primary productivity</td>
<td>26, 42, 45, 74, 76, 79</td>
</tr>
<tr>
<td>net primary productivity (global)</td>
<td>45</td>
</tr>
<tr>
<td>overview</td>
<td>73</td>
</tr>
<tr>
<td>net yield</td>
<td>47</td>
</tr>
<tr>
<td>neutral mixture effect</td>
<td>342</td>
</tr>
<tr>
<td>niche differentiation</td>
<td>338, 339</td>
</tr>
<tr>
<td>nitrogen, 85</td>
<td></td>
</tr>
<tr>
<td>content in biomass, 86</td>
<td></td>
</tr>
<tr>
<td>nitrogen concentration, 85</td>
<td></td>
</tr>
<tr>
<td>nitrogen fixing</td>
<td>340</td>
</tr>
<tr>
<td>nitrogen use efficiency</td>
<td>93</td>
</tr>
<tr>
<td>normal distribution</td>
<td>417</td>
</tr>
<tr>
<td>normal yield table</td>
<td>440</td>
</tr>
<tr>
<td>nutrient content</td>
<td>84</td>
</tr>
<tr>
<td>object of the investigation</td>
<td>121</td>
</tr>
<tr>
<td>old-growth forest stand</td>
<td>48, 56</td>
</tr>
<tr>
<td>one-factor design</td>
<td>130</td>
</tr>
<tr>
<td>opening angle</td>
<td>316</td>
</tr>
<tr>
<td>optimum basal area</td>
<td>409</td>
</tr>
<tr>
<td>organic carbon</td>
<td></td>
</tr>
<tr>
<td>content in soil</td>
<td>89</td>
</tr>
<tr>
<td>overyielding, 342, 349, 353</td>
<td></td>
</tr>
<tr>
<td>transgressive, 349</td>
<td></td>
</tr>
<tr>
<td>ozone fumigation</td>
<td>392</td>
</tr>
<tr>
<td>packing density</td>
<td>72</td>
</tr>
<tr>
<td>pair correlation function</td>
<td>256, 261–266</td>
</tr>
<tr>
<td>example</td>
<td>257</td>
</tr>
<tr>
<td>partitioning</td>
<td>70</td>
</tr>
<tr>
<td>biomass</td>
<td></td>
</tr>
<tr>
<td>percentage canopy cover</td>
<td>267</td>
</tr>
<tr>
<td>phosphorus concentration</td>
<td>85</td>
</tr>
<tr>
<td>photosynthesis model</td>
<td>469</td>
</tr>
<tr>
<td>photosynthetic efficiency</td>
<td>460</td>
</tr>
<tr>
<td>phytometer, 25, 433</td>
<td></td>
</tr>
<tr>
<td>Pielou’s distribution index</td>
<td>250</td>
</tr>
<tr>
<td>range</td>
<td>252</td>
</tr>
<tr>
<td>Pielou’s segregation index</td>
<td>285</td>
</tr>
<tr>
<td>example</td>
<td>286</td>
</tr>
<tr>
<td>test statistic</td>
<td>286</td>
</tr>
<tr>
<td>pipe-model theory</td>
<td>472</td>
</tr>
<tr>
<td>plant spacing-thinning experiment</td>
<td>121</td>
</tr>
<tr>
<td>plot boundary, 113, 333</td>
<td></td>
</tr>
<tr>
<td>plot size, 126, 127</td>
<td></td>
</tr>
<tr>
<td>tree number, 127</td>
<td></td>
</tr>
<tr>
<td>point density, 251</td>
<td></td>
</tr>
<tr>
<td>point emission source</td>
<td>144</td>
</tr>
<tr>
<td>poisoning, 340</td>
<td></td>
</tr>
<tr>
<td>Poisson distribution, 242–244, 262</td>
<td></td>
</tr>
<tr>
<td>example, 244</td>
<td></td>
</tr>
<tr>
<td>position-independent competition index</td>
<td></td>
</tr>
<tr>
<td>comparison to position-dependent index</td>
<td>310</td>
</tr>
<tr>
<td>potassium concentration</td>
<td>85</td>
</tr>
<tr>
<td>potential growth</td>
<td>454</td>
</tr>
<tr>
<td>potential modifier</td>
<td>454, 458</td>
</tr>
<tr>
<td>practical experiment</td>
<td>111</td>
</tr>
<tr>
<td>practical relevance</td>
<td>29</td>
</tr>
<tr>
<td>precision, 496, 498</td>
<td></td>
</tr>
<tr>
<td>pre-commercial thinning</td>
<td>167</td>
</tr>
<tr>
<td>primary factor, 24</td>
<td></td>
</tr>
<tr>
<td>primary production</td>
<td>42</td>
</tr>
<tr>
<td>process-based model</td>
<td>462</td>
</tr>
<tr>
<td>production ecology</td>
<td></td>
</tr>
<tr>
<td>link to forest growth and yield</td>
<td>42</td>
</tr>
<tr>
<td>projection of tree crowns</td>
<td>116</td>
</tr>
<tr>
<td>provenance trial</td>
<td>103</td>
</tr>
<tr>
<td>proxy variable, 24</td>
<td></td>
</tr>
<tr>
<td>public participation</td>
<td>483</td>
</tr>
<tr>
<td>radiation, 458</td>
<td></td>
</tr>
<tr>
<td>radiation model</td>
<td>468</td>
</tr>
<tr>
<td>random effect</td>
<td></td>
</tr>
<tr>
<td>modelling of, 420</td>
<td></td>
</tr>
<tr>
<td>random number, 128, 418</td>
<td></td>
</tr>
<tr>
<td>randomisation, 123, 128</td>
<td></td>
</tr>
<tr>
<td>randomised design, 129</td>
<td></td>
</tr>
<tr>
<td>rasterise the stand area</td>
<td>312</td>
</tr>
<tr>
<td>realised niche, 339, 343</td>
<td></td>
</tr>
<tr>
<td>reductionism, 22, 29</td>
<td></td>
</tr>
<tr>
<td>regression sampling</td>
<td>184</td>
</tr>
<tr>
<td>regulating parameter</td>
<td>17</td>
</tr>
<tr>
<td>Reineke’s stand density index</td>
<td>270</td>
</tr>
<tr>
<td>Reineke’s stand density rule, 508</td>
<td></td>
</tr>
<tr>
<td>relative growth rate, 46</td>
<td></td>
</tr>
<tr>
<td>relative periodic mean basal area, 269</td>
<td></td>
</tr>
<tr>
<td>relevance, 23, 28</td>
<td></td>
</tr>
<tr>
<td>removal volume, 56</td>
<td></td>
</tr>
<tr>
<td>replication, 12, 123</td>
<td></td>
</tr>
<tr>
<td>research</td>
<td></td>
</tr>
<tr>
<td>scale-overlapping, 31</td>
<td></td>
</tr>
<tr>
<td>research question, 111</td>
<td></td>
</tr>
<tr>
<td>resilience, 13</td>
<td></td>
</tr>
<tr>
<td>resolution, 31</td>
<td></td>
</tr>
</tbody>
</table>
Index

resource allocation, 470
 constant partitioning, 471
 purpose-oriented distribution, 471
 transport resistance, 473
resource availability, 291
resource use efficiency, 34, 89
 definition, 89
respiration, 44, 65, 470
response variable, 122, 181, 183
Ripley’s K-function, 264
root
 factor, 69
 root-shoot ratio, 70
 site-specific, 71
rule of declining marginal benefit, 383
rule of thumb, 32

sample square method
 selection of square size, 255
sapwood, 65, 81
sapwood portion
 factor, 81
scale
 spatial, 2
 temporal, 2
scientific evidence, 29
scientific experiment, 111
search cone, 317
sectional view, 229
selection forest, 243
 target stem number-diameter distribution, 165
 selection forest system, 19, 160
 selection thinning, 160
 selective thinning, 160
 candidate, 154
 contender, 154
 criteria for selection, 161
 qualitative group, 161
 reserve tree, 154
 superior tree, 154
self-thinning, 58, 399, 457
 line, 400
 Reineke’s rule, 402
 slope, 404
 Yoda’s rule, 405
self-tolerance, 404
severity of thinning, 166
 target density curve, 170
shading, 317
Shannon’s diversity index, 279
 example, 280
shelterwood system, 19
 shoot length, 117
 retracing shoot length, 118
 signal, 17
silvicultural prescription, 152
 algorithmic formulation, 177
 example, 154
 simulation model, 177
single-tree mixture, 228
sit-and-wait strategy, 371
site class, 433, 434
site fertility, 24, 433
 indicator, 25
site-growth relationship, 26, 35, 37
site index, 442
site productivity, 433
size class distribution model, 445, 446
sky factor, 321, 322
social tree class, 154
spacing experiment, 142
spatial configuration, 9, 292
spatial growth constellation
 dot counting, 315
 spatial rastering, 315
spatial occupancy, 274, 275
species diversity, 279
species in Central Europe
 stand characteristics, 60
 species intermingling, 284, 285
species mixture, 152, 337
 productivity, 337
 structure of, 152
species profile index, 281
 example, 282, 283
 standardised, 282
species richness, 279
spline function, 230
split-plot design, 137, 139, 143
 square sample method, 252
stability, 13
stand density, 266–276
 Assman’s rule, 408
 growth response, 410
 index, 270, 271, 400
 management diagram SDMD, 169
 range, 272
 Reineke’s index, 400
 and stand growth, 348, 408
stand density regulation, 410
 fertilisation trial, 171
 minimax method, 171
 provenance trial, 171
 reference curve, 168
stand density rule from Reineke, 271
stand evolution model, 449
stand growth model, 432
stand growth simulator, 444
stand management
guideline, 169
stand mean and cumulative value
gross volume growth, 204
gross volume increment, 204
mean annual increment, 204
mean diameter, 200
mean diameter of the top height trees, 200
mean height, 201
periodic annual increment, 204
reference area, 199
slenderness value, 203
stand basal area, 203
standing volume, 203, 204
top height, 201
tree number, 199
volume of removed trees, 206
volume yield, 204
stand profile diagram, 229, 236
eexample, 239
stand structure
description, 223
digitising crown expansion, 240
feedback on growth, 226
horizontal cross-section, 240
interaction with processes, 225
numerical quantification, 224
silvicultural interference, 227
species diversity, 223, 225
stand visualisation, 230, 238
eexample, 486
stand-based approach
transition to individual tree approach, 292
standard analysis of long-term experimental plots, 208
age-diameter development, 212
eexample, 205
gross volume yield, 218
mean annual increment, 218
mean height value, 214
percentage intermediate yield, 219
percentage volume increment, 219
periodic annual increment, 217
result table, 207
slenderness, 216
stand basal area, 216
stand development diagram, 211
stand height curves, 214
standing volume, 216
structure and list of variables, 205
total volume production, 218
tree number, 214
tree number-diameter frequency, 213
standard deviation, 416
standard error, 417
standardised diversity, 280
standardised normal distribution, 418
standing biomass
overview, 73
standing volume, 56, 72, 183
nutrient content, 88
over bark, 76
overview, 73
ttrue, 64
statistical model, 477
stem analyse, 118
stem coordinate, 115
stem disks, 117, 118
stem growth, 44
stem number-diameter distribution, 165
inverse J-shaped, 164
stem volume, 117
stochastic process model, 450
stocking density, 266
strength of competition, 299
competitive influence zone, 299
crown overlap, 299
ratio of crown size, 301
ratio of tree size dimension, 300
structural dynamic, 147
structural parameter, 223
as indicator variable, 223
structural quartet, 277, 284
structure generation, 332, 334
eexample, 331
sulphur emission, 145
growth response, 144
superior tree, 160
surrogate variable, 32, 381
sustainable forest management, 20
criteria, 21
symmetrical competition, 342
system characteristics, 1
dynamic, 2
static, 2
system complexity, 425
system knowledge
integration, 489
systematic error, 135
target diameter, 166
terrestrial laser scanning Lidar, 22
theory of critical rationalism, 513
theory of forest dynamics, 26
Index

Thiessen-polygon, 313
thinning
from above, 156
A grade, 157
from below, 156
C grade, 158
distance regulation, 161
individual tree based prescription, 172
intensity of, 151, 175
kind of, 151
L I grade, 158
L II grade, 158
open-stand, 156
opening up, 158
scenario analysis, 177
severity of, 151
target diameter, 164
tree number regulation, 163
yield tables, 159
thinning grade, 155
thinning trial, 208
threshold diameter harvesting, 165
time series, 5
artificial, 3
real, 3
toolbox principle, 491
top-down approach, 18, 428
total volume, 56
tradeoff, 489
transfer-function, 449
transgressive overyielding, 358
transition probability, 449
treatment option, 489
scenario analysis, 489
treatment variant, 122
tree compartments, 49, 71
tree dimensions
in managed forests, 55
in unmanaged old-growth forests, 56
tree distribution
clustering, 256
effect on stand growth, 250
inhibition, 256
random, 256
trial plot, 140
trial series, 130, 139
turnover, 45, 47, 79
ephemeral, 72, 75
estimation of whole tree, 63
factor, 65
heartwood extension, 83
multiplier, 64
plant organ, 66
root, 75
short-term, 72
site dependency, 75
whole tree, 61, 62, 66
two-factor investigation
effect of interaction, 136
undayielding, 349, 353
unevenaged mixed stand, 59
upper boundary line, 169
upsampling, 31
volume to biomass, 71
variability
modelling biological, 418
variance, 416
variation coefficient, 416
variation range, 416
verification, 493
vertical profile, 274
visualisation, 237, 482
management scenarios, 485
real-time, 483
three-dimensional, 483
visualisation software, 484
volume function, 198
volume table, 198
volume yield, 57
Voronoi-polygon, 313
water use efficiency, 89, 94
Weibull’s distribution, 448
Weibull’s function, 446
white-box approach, 426
wood density, 64
selected tree species, 67
specific, 65, 66
thumb value, 67
yield
curve, 53
gross, 48
gross volume, 57
individual tree, 53
intermediate, 59
net, 48
stand level, 56
true, 81
yield curve, 51
yield function, 393, 394, 398
yield level, 435
yield of pure and mixed stands
reference values, 59
yield table, 26, 432, 440, 442, 444
basic relationships, 432
computer-supported, 442
indicator method, 436

principle of construction, 432
strip method, 436
Yoda’s rule, 474
Yoda’s self-thinning rule, 509
Zeide’s measure for self-tolerance, 402