The effect of species mixing on tree and stand growth. Review and perspectives

Hans Pretzsch
Chair for Forest Growth and Yield Science
Technical University of Munich
http://www.wwk.forst.wzw.tum.de/info/presentations/

1. Need for silvicultural guidelines and models for mixed-species stands
2. Key mixing effects on tree and stand dynamics
3. Measures for silvicultural regulation of mixed-species stands
Guidelines for silvicultural regulation of mixed-species stand can bring the mixing idea onto the ground.
Silvicultural guidelines require models and scenario analyses of silvicultural options
SILVA 3.0 as example of a spatially explicit individual tree model for pure and mixed stands

Pretzsch, H., Biber, P. und Dursky, J., 2002: The single tree based stand simulator SILVA. Construction, application and evaluation, Forest Ecology and Management, 162: 3-21
SILVA 3.0 as example of a spatially explicit individual tree model for pure and mixed stands

Integration of mixing effects on growth, structure, mortality

Extension of the algorithms for silvicultural regulation

Pretzsch, H., Biber, P. und Dursky, J., 2002: The single tree based stand simulator SILVA. Construction, application and evaluation, Forest Ecology and Management, 162: 3-21
SILVA 3.0 as example of a spatially explicit individual tree model for pure and mixed stands

Summary 1:
• For bringing the mixed-species stand idea to the ground we need silvicultural guidelines, based on models and scenario analyses
• So far, scattered mosaic pieces of knowledge about mixed stands need integration to a picture of the whole
• Mixed stand models require rules for silvicultural regulation

Pretzsch, H., Biber, P. und Dursky, J., 2002: The single tree based stand simulator SILVA. Construction, application and evaluation, Forest Ecology and Management, 162: 3-21
Mixing effects on productivity. Inventory data worldwide and experiments in Central Europe

<table>
<thead>
<tr>
<th>Species combination</th>
<th>N. sp/</th>
<th>S. pi/</th>
<th>s. oak/</th>
<th>E. be/</th>
<th>S. pi/</th>
<th>E. la/</th>
<th>N. sp/</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. be</td>
<td>E. be</td>
<td>E. be</td>
<td>D-fir</td>
<td>N. sp</td>
<td>N. sp</td>
<td>s. fir</td>
<td></td>
</tr>
<tr>
<td>overyielding</td>
<td>21</td>
<td>30</td>
<td>20</td>
<td>11</td>
<td>21</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(± SE) in %</td>
<td>(± 3)</td>
<td>(± 9)</td>
<td>(± 3)</td>
<td>(± 8)</td>
<td>(± 11)</td>
<td>(± 6)</td>
<td>(± 6)</td>
<td></td>
</tr>
<tr>
<td>corr. factor</td>
<td>1.10</td>
<td>1.20</td>
<td>1.10</td>
<td>1.10</td>
<td>1.20</td>
<td>1.20</td>
<td>1.10</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Effect of tree species mixing on stand density represented by self-thinning line and SDI
Wider size range, stronger right-skewness in mixed stands; more vertical heterogeneity, often species 1 ahead, species 2 behind.
Allometry between crown projection area and stem diameter of European when growing in mono-specific versus mixed stands

Allometry between crown projection area and stem diameter of European when growing in mono-specific versus mixed stands

Summary 2:
Mixed stands showed compared with pure stands among others:
- overyielding by 10-30 %
- higher stand density but similar d_q, h_q
- wider tree size range, greater tree size inequality, heterogeneity
- different tree allometry

SILVA 3.0 as example of a spatially explicit individual tree model for pure and mixed stands

Integration of mixing effects on growth, structure, mortality

Extension of the algorithms for silvicultural regulation

Pretzsch, H., Biber, P. und Dursky, J., 2002: The single tree based stand simulator SILVA. Construction, application and evaluation, Forest Ecology and Management, 162: 3-21
Rules and algorithms for initiating the regeneration depending on the density of the overstorey

stand basal area (m2 ha$^{-1}$)

time (years)

Rules and algorithms for regulation of competition by spatial or temporal separation

Rules and algorithms for regulation of stand density and species-specific mixing proportions

Rules and algorithms for regulation of stand density and species-specific mixing proportions

Summary 3:
Rules and algorithms in models are required for:
• artificial and natural regeneration
• spatial and temporal separation of species
• regulation of stand density
• mixing proportions, based on the species’ space requirements
Knowledge gaps and next steps

- stand density and mixing effects
- effect of different spatial mixing patterns (e.g., individual tree, group, cluster)
- mixing effects depending on site conditions
- effect of mixing on tree allometry, structure, wood quality
- further analyses of essential mixtures, e.g., pine/oak, E. beech/Douglas-fir, spruce/fir/beech
Summary and conclusions

- In order to bring mixed-species stands on the ground in forest practice we need quantitative silvicultural guidelines.
- The development of guidelines requires models for scenario analyses.
- The currently available models need adaptation to mixed-species stands.
- For this purpose knowledge of mixing effects should be extended and integrated into models.
- Essential is finally the formulation and integration of rules and algorithms for silvicultural regulation.
Criteria for sustainable forest ecosystem management.
Objective hierarchy for the management of municipal forest Traunstein

<table>
<thead>
<tr>
<th>Criteria for sustainable forest management</th>
<th>Indicators</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest resources</td>
<td>timber resources, area of forest, extension of area</td>
<td>20</td>
</tr>
<tr>
<td>Health and vitality</td>
<td>stability, fitness, elasticity</td>
<td>17</td>
</tr>
<tr>
<td>Productive functions</td>
<td>growth, yield, net return</td>
<td>12</td>
</tr>
<tr>
<td>Biological diversity</td>
<td>habitat quality, richness flora/fauna, conservation</td>
<td>10</td>
</tr>
<tr>
<td>Protective functions</td>
<td>soil, water, climate, noise, protection</td>
<td>10</td>
</tr>
<tr>
<td>Socio-economic functions</td>
<td>employment, recreation, esthetics, proximity to nature</td>
<td>31</td>
</tr>
</tbody>
</table>
Gesamteuropäische Kriterien 1-6 und Indikatoren für die nachhaltige Bewirtschaftung von Wäldern

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Indikatoren (beispielhaft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Forstliche Ressourcen</td>
<td>Waldfläche, Kohlenstoffvorrat, Alters- und Durchmesserstruktur, …</td>
</tr>
<tr>
<td>2 Gesundheit und Vitalität</td>
<td>chem. Bodenzustand, Nadel- und Blattverluste, Deposition, …</td>
</tr>
<tr>
<td>3 Produktionsfunktionen</td>
<td>Zuwachs, Hiebsatz, Nichtholzprodukte, …</td>
</tr>
<tr>
<td>4 Biologische Diversität</td>
<td>Baumartenvielfalt, Naturnähe, Totholzvorrat, Landschaftsdiversität, …</td>
</tr>
<tr>
<td>5 Schutzfunktionen</td>
<td>Anteil Schutzwälder für Klima, Boden, Wasser, …</td>
</tr>
<tr>
<td>6 Sozio-ökonomische Funktionen</td>
<td>Waldreinertrag, Anzahl der Beschäftigten, Landschaftsbild, …</td>
</tr>
</tbody>
</table>

nach MCPFE, 2000